|
ORACLE

JSR 338: Java'™ Persistence API Version 2.2

Maintenance Leads:
Linda DeMichiel, Oracle

Lukas Jungmann, Oracle

Version 2.2, Maintenance Release
July 17, 2017

Java Persistence 2.2, Maintenance Release Oracle

Specification: JSR-338 Java Persistence Specification ("'Specification')
Version: 2.2

Status: Maintenance Release

Specification Lead: Oracle America, Inc. (“Specification Lead”)
Release: July 2017

Copyright 2017 Oracle America, Inc.
All rights reserved.

LIMITED LICENSE GRANTS

1. License for Evaluation Purposes. Specification Lead hereby grants you a fully-paid, non-exclusive,
non-transferable, worldwide, limited license (without the right to sublicense), under Specification Lead's
applicable intellectual property rights to view, download, use and reproduce the Specification only for
the purpose of internal evaluation. This includes (i) developing applications intended to run on an im-
plementation of the Specification, provided that such applications do not themselves implement any por-
tion(s) of the Specification, and (ii) discussing the Specification with any third party; and (iii) excerpting
brief portions of the Specification in oral or written communications which discuss the Specification pro-
vided that such excerpts do not in the aggregate constitute a significant portion of the Specification.

2. License for the Distribution of Compliant Implementations. Specification Lead also grants you a per-
petual, non-exclusive, non-transferable, worldwide, fully paid-up, royalty free, limited license (without
the right to sublicense) under any applicable copyrights or, subject to the provisions of subsection 4 be-
low, patent rights it may have covering the Specification to create and/or distribute an Independent Im-
plementation of the Specification that: (a) fully implements the Specification including all its required
interfaces and functionality; (b) does not modify, subset, superset or otherwise extend the Licensor Name
Space, or include any public or protected packages, classes, Java interfaces, fields or methods within the
Licensor Name Space other than those required/authorized by the Specification or Specifications being
implemented; and (c) passes the Technology Compatibility Kit (including satisfying the requirements of
the applicable TCK Users Guide) for such Specification ("Compliant Implementation"). In addition, the
foregoing license is expressly conditioned on your not acting outside its scope. No license is granted
hereunder for any other purpose (including, for example, modifying the Specification, other than to the
extent of your fair use rights, or distributing the Specification to third parties). Also, no right, title, or
interest in or to any trademarks, service marks, or trade names of Specification Lead or Specification
Lead's licensors is granted hereunder. Java, and Java-related logos, marks and names are trademarks or
registered trademarks of Oracle America, Inc. in the U.S. and other countries.

3. Pass-through Conditions. You need not include limitations (a)-(c) from the previous paragraph or any
other particular "pass through" requirements in any license You grant concerning the use of your Inde-
pendent Implementation or products derived from it. However, except with respect to Independent Im-
plementations (and products derived from them) that satisfy limitations (a)-(c) from the previous
paragraph, You may neither: (a) grant or otherwise pass through to your licensees any licenses under
Specification Lead's applicable intellectual property rights; nor (b) authorize your licensees to make any
claims concerning their implementation's compliance with the Specification in question.

4. Reciprocity Concerning Patent Licenses.

a. With respect to any patent claims covered by the license granted under subparagraph 2 above that
would be infringed by all technically feasible implementations of the Specification, such license is con-
ditioned upon your offering on fair, reasonable and non-discriminatory terms, to any party seeking it
from You, a perpetual, non-exclusive, non-transferable, worldwide license under Your patent rights

2 7/17/17

Java Persistence 2.2, Maintenance Release Oracle

which are or would be infringed by all technically feasible implementations of the Specification to de-
velop, distribute and use a Compliant Implementation.

b With respect to any patent claims owned by Specification Lead and covered by the license granted
under subparagraph 2, whether or not their infringement can be avoided in a technically feasible manner
when implementing the Specification, such license shall terminate with respect to such claims if You ini-
tiate a claim against Specification Lead that it has, in the course of performing its responsibilities as the
Specification Lead, induced any other entity to infringe Your patent rights.

¢ Also with respect to any patent claims owned by Specification Lead and covered by the license granted
under subparagraph 2 above, where the infringement of such claims can be avoided in a technically fea-
sible manner when implementing the Specification such license, with respect to such claims, shall termi-
nate if You initiate a claim against Specification Lead that its making, having made, using, offering to
sell, selling or importing a Compliant Implementation infringes Your patent rights.

5. Definitions. For the purposes of this Agreement: "Independent Implementation" shall mean an imple-
mentation of the Specification that neither derives from any of Specification Lead's source code or bi-
nary code materials nor, except with an appropriate and separate license from Specification Lead,
includes any of Specification Lead's source code or binary code materials; "Licensor Name Space" shall
mean the public class or interface declarations whose names begin with "java", "javax", "com.oracle" and
"com.sun" or their equivalents in any subsequent naming convention adopted by Oracle America, Inc.
through the Java Community Process, or any recognized successors or replacements thereof; and "Tech-
nology Compatibility Kit" or "TCK" shall mean the test suite and accompanying TCK User's Guide pro-
vided by Specification Lead which corresponds to the Specification and that was available either (i) from
Specification Lead's 120 days before the first release of Your Independent Implementation that allows
its use for commercial purposes, or (ii) more recently than 120 days from such release but against which
You elect to test Your implementation of the Specification.

This Agreement will terminate immediately without notice from Specification Lead if you breach the
Agreement or act outside the scope of the licenses granted above.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS". SPECIFICATION LEAD MAKES NO REPRESEN-
TATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMIT-
ED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
NON-INFRINGEMENT (INCLUDING AS A CONSEQUENCE OF ANY PRACTICE OR IMPLE-
MENTATION OF THE SPECIFICATION), OR THAT THE CONTENTS OF THE SPECIFICATION
ARE SUITABLE FOR ANY PURPOSE. This document does not represent any commitment to release
or implement any portion of the Specification in any product. In addition, the Specification could include
technical inaccuracies or typographical errors.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, INNO EVENT WILL SPECIFICATION LEAD OR
ITS LICENSORS BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION,
LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCI-
DENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEO-
RY OF LIABILITY, ARISING OUT OF OR RELATED IN ANY WAY TO YOUR HAVING,
IMPELEMENTING OR OTHERWISE USING USING THE SPECIFICATION, EVEN IF SPECIFI-

3 7/17/17

Java Persistence 2.2, Maintenance Release Oracle

CATION LEAD AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

You will indemnify, hold harmless, and defend Specification Lead and its licensors from any claims aris-
ing or resulting from: (i) your use of the Specification; (ii) the use or distribution of your Java application,
applet and/or implementation; and/or (iii) any claims that later versions or releases of any Specification
furnished to you are incompatible with the Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or by a
U.S. Government prime contractor or subcontractor (at any tier), then the Government's rights in the
Software and accompanying documentation shall be only as set forth in this license; this is in accordance
with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with
48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT

If you provide Specification Lead with any comments or suggestions concerning the Specification
("Feedback"), you hereby: (i) agree that such Feedback is provided on a non-proprietary and non-confi-
dential basis, and (ii) grant Specification Lead a perpetual, non-exclusive, worldwide, fully paid-up, ir-
revocable license, with the right to sublicense through multiple levels of sublicensees, to incorporate,
disclose, and use without limitation the Feedback for any purpose.

GENERAL TERMS

Any action related to this Agreement will be governed by California law and controlling U.S. federal law.
The U.N. Convention for the International Sale of Goods and the choice of law rules of any jurisdiction
will not apply.

The Specification is subject to U.S. export control laws and may be subject to export or import regula-
tions in other countries. Licensee agrees to comply strictly with all such laws and regulations and ac-
knowledges that it has the responsibility to obtain such licenses to export, re-export or import as may be
required after delivery to Licensee.

This Agreement is the parties' entire agreement relating to its subject matter. It supersedes all prior or
contemporaneous oral or written communications, proposals, conditions, representations and warranties
and prevails over any conflicting or additional terms of any quote, order, acknowledgment, or other com-
munication between the parties relating to its subject matter during the term of this Agreement. No mod-
ification to this Agreement will be binding, unless in writing and signed by an authorized representative
of each party.

4 71717

Oracle

Java Persistence 2.2, Maintenance Release

Table of Contents

Chapter 1 G318 014 o1 o) 1 B ST RP 21
L1 EXPEIt GIOUP -eeuviuiitieniiiieie ettt ettt ettt ettt ettt st sae s eneas 21
1.2 Document CONVENEIONSecueeuiertiriirieiinteeniesitesteeteteetesteeiee st eneeseeeeeseeenees 21
Chapter 2 ENEIEIES ©ouvieiiieiiecee ettt ettt ettt et et e e ae e st e s st e enteeeaaeerbeessbeenaeensaeenbaeaneas 23
2.1 The ENtity Classccoeeoierierieniiiieieeiesie ettt sttt s 23
2.2 Persistent Fields and Properties.........cecvecierieieriiriiene e 24
2.2.1 EXAMPIE ..ot 27
2.3 ACCESS TYPC ettt ettt e 28
2.3.1 Default ACCESS TYPE cocveeviieiieeiiieiie ettt es 28
2.3.2 EXPlCIt ACCESS TYPEC.eeotiiiiieiieeieiitiecieeteeeteeteeitesveesaee e eseaeseneenns 29
2.3.3 Access Type of an Embeddable Class..........cccceevieciienveeeniienieenee 30

2.3.4 Defaulted Access Types of Embeddable Classes and Mapped Superclasses

30

2.4 Primary Keys and Entity Identityccoooovieniniiniiiiiieeeeeeece e 30
2.4.1 Primary Keys Corresponding to Derived Identities..............ccceeuvenee 32
2.4.1.1 Specification of Derived Identities...........cccecverveecreenreennnenn 32
2.4.1.2 Mapping of Derived Identities.........ccccceeveerveecieeneeeeeennnns 33
2.4.1.3 Examples of Derived Identitiescccoevvevveecrienreereeennnns 33
2.5 Embeddable Classesocoririerinieninieniieienieeee sttt 41
2.6 Collections of Embeddable Classes and Basic Typescccoevvevveienirereennenne. 42
2.7 MAaP COlIECIONS ..ceveereiieeiieriieeieeiteiie et e ette et eseeessreebeeseeenteessseesseesreeeseenseens 42
271 MaAP KEYS ettt 42
2.7.2 MaP VAUCS.....ooiiiiiiiieet et 43
2.8 Mapping Defaults for Non-Relationship Fields or Properties............cccc.e.... 43
2.9 Entity RelationsShiPsccocveieeierieiieiiet ettt 44
2.10 Relationship Mapping Defaults..........ccoceiiriiiiiiinieiinecee e 46
2.10.1 Bidirectional OneToOne Relationshipscccceeeveervenieeniienceeennnns 46
2.10.2 Bidirectional ManyToOne / OneToMany Relationships................... 47
2.10.3 Unidirectional Single-Valued Relationships..........ccccccvevvvevieneennnn. 49
2.10.3.1 Unidirectional OneToOne Relationships............cccccveeuenee. 49
2.10.3.2 Unidirectional ManyToOne Relationships..............cceu..... 50
2.10.4 Bidirectional ManyToMany Relationshipscccoeeveecieerieeniennnnnne 51
2.10.5 Unidirectional Multi-Valued Relationshipsccceeeveecvienienceennene 52
2.10.5.1 Unidirectional OneToMany Relationshipsc.cccue..... 53
2.10.5.2 Unidirectional ManyToMany Relationships....................... 54
2,11 TNREIIEANCE ...nveeiientieiieeeiee et sttt st 55
2.11.1 Abstract Entity Classescceccvereriiereeriereerienieeieseeee e e eee e 55
2.11.2 Mapped SUPETCLASSEScveeveereeeiieieeeeieeiie ettt eees 56
2.11.3 Non-Entity Classes in the Entity Inheritance Hierarchy................... 58
2.12 Inheritance Mapping Strate@IeScccveeverreeruerreererieieereierseeneeeeesseeaesseenees 59
2.12.1 Single Table per Class Hierarchy Strategy.........cccccevvveevveerveeneennnenn 59
2.12.2 Joined Subclass Strate@yccceeeerierrieeriieeieenieeieesreeieesieeeseeeenens 59

5 71717

Oracle

Java Persistence 2.2, Maintenance Release

2.12.3 Table per Concrete Class Strategy........cceeevverveereerieereenreeieeeeeennes 60

2.13 Naming of Database ODJECTScceeverieiiirieniiiiere e 60
Chapter 3 ENtity OPEIationscccveeieierierieniierieseeteseeteeteestessaesseesseseessesseessesssessesseessesseessenseans 63
3.1 ENtityMAanaercoueeiuiiieieeieniceiiesie ettt sttt sttt st 63
3.1.1 EntityManager INterface........ccccccuvvvuierieiviienieeiieie e 65

3.1.2 Example of Use of EntityManager APcccccoieiniiiininninne. 80

3.2 Entity Instance’s Life Cyclecccovoiiirieiiniiiiiiieeeeeeeee e 80
3.2.1 Entity Instance Creation..........cceceevereeeeierieeienieeienseeeeseesneseesseeeens 81

3.2.2 Persisting an Entity INStanceccocevvvieriiieneiieeeeeeeeeeene 81

3.2.3 REMOVAL .ottt 81

3.2.4 Synchronization to the Database...........cccccveeverieiieririieneeesieeians 82

3.2.5 Refreshing an Entity INStanceccoecveveveienienienenieneeieeeeeene 83

3.2.6 Evicting an Entity Instance from the Persistence Context................ 84

3.2.7 Detached ENtities.ccccoerieriireieieieiieeene ettt 84

3.2.7.1 Merging Detached Entity State..........cccccvrevrververieneeienenne 85

3.2.7.2 Detached Entities and Lazy Loading............cccevvrveruenne 86

3.2.8 Managed INSTANCESccecveeeiereieiiiieiesieeie et 86

3.2.9 L0ad StALE..c..eoviureieieiieiieirteeiet ettt et 86

3.3 Persistence Context Lifetime and Synchronization Type.........cccccvevvievenienns 87
3.3.1 Synchronization with the Current Transaction............ccecceeeeveeruvennnen. 88

3.3.2 Transaction COMIMIT.......ccerierieiinierienieie ettt 88

3.3.3 Transaction RolIback.........cccceeieniiiiiniiiiiiine e 89

3.4 Locking and CONCUITENCYccccvercueeririeieeniieenieenieeseesreeseessseesseessseesseessseenes 89
3.4.1 Optimistic LOCKING.....ccciiiiiieiieiiiiieeie ettt eve et ees 90

3.4.2 Version AIIDULES.coveruieiieiieiiiierteeicete et 90

3.4.3 Pessimistic LOCKING......ccieviieiiiiiieiiieie e 91

344 LOCK MOAES.....oouiiiiiiiiiiieiiiieeeeee ettt 92

3.4.4.1 OPTIMISTIC, OPTIMISTIC FORCE INCREMENT......93

3.4.4.2 PESSIMISTIC_READ, PESSIMISTIC WRITE,
PESSIMISTIC_FORCE_INCREMENTY%4

3.4.4.3 Lock Mode Properties and Usescccceeceevereerenienennnene 96
3.4.5 OptimisticLOCKEXCEPHION.cceruiiiiiieiiiieiriere e 97
3.5 Entity Listeners and Callback Methods.........ccccooceeviiiiiiiinniiiinciceee 98
3.5.1 ENtity LISTENETS .oooveeeiieiieiiieeieecie ettt eree et eie e eve e eve e 98
3.5.2 Lifecycle Callback Methods..........ccceeeviiiiiinienieniieieciee e 100
3.5.3 Semantics of the Life Cycle Callback Methods for Entities.............. 101
3.54 EXAMPIC..oiiiiiiiiiiiieiie ettt ettt ees 102
3.5.5 Multiple Lifecycle Callback Methods for an Entity Lifecycle Event102
3.5.6 EXAMPIC..uiiiiiiiiiiiieiiecitecee ettt st ens 103
3.5.7 EXCEPLIONS c.uveeeeeeiieciiieiee ettt esiee st et eiaeesteeeteeeaesnteessaessseesnneensnesnens 105
3.5.8 Specification of Callback Listener Classes and Lifecycle Methods in the
XML Descriptor105
3.5.8.1 Specification of Callback Listenersc.cccceeverereeruvennene 105
3.5.8.2 Specification of the Binding of Entity Listener Classes to Entities
106
3.6 Bean Validation..........ccoceeierieiieiesieieeeeieeee ettt st ens 106
3.6.1 Automatic Validation Upon Lifecycle Events..........cccceeuvevvenieencnne 107

717 6

Oracle

Chapter 4

Java Persistence 2.2, Maintenance Release

3.6.1.1 Enabling Automatic Validationccccceceevercenercnncnnen. 107

3.6.1.2 Requirements for Automatic Validation upon Lifecycle Events107
3.6.2 Providing the ValidatorFactorycocceveverienieniinienencene e 108
TR 25 U5 U € 51 o) TSRS 109
3.7.1 EntityGraph INterface.........cceecveevieiniienieeiieeecee et 110
3.7.2 AttributeNode INterfaceccceeveeeveenieiiieieeie e 113
3.7.3 Subgraph Interfacecocceveriiriinenieneeeee e 114
3.7.4 Use of Entity Graphs in find and query operations..............c.ccue...... 117
3.7.4.1 Fetch Graph SemanticCs.........cceccververrreeiiverieeneenieesiienneenns 117
3.7.4.2 Load Graph SemanticCs.........ccceeverveerueerverieeneesieesvenveenns 120
3.8 Type Conversion of Basic AttribULEScccevcveerieerieeiiieeieee e seee e 122
3.9 CACRING...ooiieiiieiieie ettt et sttt ne e ens 125
3.9.1 The shared-cache-mode Element..........ccccccuerverciienieeneeniinieeeeenne, 126
3.9.2 Cache Retrieve Mode and Cache Store Mode Properties................. 127
3,10 QUETY APIS oottt ettt et s sr et nnneenee 129
3.10.1 Query INtETTaCe ..o.veeveieeiieiieecieeeee et 129
3.10.2 TypedQuery INtErfaceccceceeveeiiiieiiieiieieeee et 138
3.10.3 Tuple INtETTACE ...ccveeeeeeeiieiiecieeeee et 143
3.10.4 TupleElement INterface.........cceevveerierieeiiieiieeceeeie e 144
3.10.5 Parameter INterfacec.ocveeveevieiieeiieic et 145
3.10.6 StoredProcedureQuery Interface.........cceeveevieeveenieiieenie e 146
3.10.7 QUEry EXECULION ...ocvvveeeiieiiieciieeie ettt etee e ete e seveeseeeeneeneae s 151
3.10.7.1 EXAMPIE ..viieiiiiieiiieiie ettt 153
3.10.8 Queries and FIush Modeccccevvieriieiiiiiieceece e 153
3.10.9 Queries and Lock MOde........cccocceeviierieeciieiieereecie e 154
3.10.10 QUETY HINES .ueveeiiiiiiiieiie ettt ettt ettt e sae e sbe e neneenes 154
3.10.11 Parameter ODJECLS ...ccuveeuveeiieeieeieeiieeieeieeereeeeesteeneresnreesreeeaeennnens 155
3.10.12 Named Parameterscceerieeveeriieecieenieeieeseeeieeieeesaeesvessnessneenns 155
3.10.13 Positional Parameters...........cceeverieerieeeiiierieeieeieesieesee e esneseneenns 155
3.10.14 Named QUETICS.....ccouieieiuiieeeieeeeteeeeetee ettt e e etae e e e 155
3.10.15 PolymorphiC QUETIES......cceevueeriieriiieiieeieeiteeveeieesiveesreeebeeeneeereenns 156
3.10.16 SQL QUETIES....ccvviierieiieeriesieeitesiteeteeereeteessseeseessseesseessseesssensseanes 156
3.10.16.1 Returning Managed Entities from Native Queries 156
3.10.16.2 Returning Unmanaged Instances..........ccceeveeveercresrrrennennns 160
3.10.16.2.1 Scalar ResultS.........cceeevriiercieniieieeieesee e 161
3.10.16.2.2 Constructor Resultsccccceeruerieenieinieereenienns 161
3.10.16.3 Combinations of Result Types.......cccccvevveriieniencieiiienieenns 162
3.10.16.4 RESIIICHIONS ..evvveeurieriieeieeiiieieeereeeteesireeteeteeeeeeereeseveenseenes 162
3.10.17 Stored ProCedUIES.......c.eevevieruieeiieiieeieeeee et esveeie e e esaeesve e seveenes 162
3.10.17.1 Named Stored Procedure Queries..........cceevvereercrerrrrennennns 163
3.10.17.2 Dynamically-specified Stored Procedure Queries.............. 163
3.10.17.3 Stored Procedure Query Executionc.cccoeceeveveervvennnenns 163
3.11 Summary of EXCEPHIONS ...cccueeiiieiieiiiciieeiie ettt eve et enbeesane s 164
QUETY LaANGUAZE......eeeiieiiieeiieiie ettt ettt e et eetae e et e et e e aeessaesnseassseeseesnnesnseens 167
O O O) [P TP 167
4.2 StAteMENT TYPES...eeiueeitieiieiiiierieeete ettt ettt ettt sttt et e e e s b s 168
4.2.1 Select StAtCMENLSeevieirieeieeiieiieeiee et eseeere e ereesaeesiaesbeeeeesee 168

7 71717

Oracle

Java Persistence 2.2, Maintenance Release

4.2.2 Update and Delete Statements...........ccceeuerierrieniinienenieneeienceneeneens 169
4.3 Abstract Schema Types and Query Domainscceceeveveenenienenniencenennn. 169
4301 NAMNEZ ..ottt ettt s ee e eneens 170
T TN 25 <2 1| o] (=T RUSU SRRSO 170
4.4 The FROM Clause and Navigational Declarationsc.ccceceeverieeceeneneenne. 172
O B 14 153 113 (S 4RSS 172
4.4.2 Identification Variablesccccoecveviireerenienecieeeieeee e 173
4.4.3 Range Variable Declarationscccoceeverieresiesieecieniieiene e 174
4.4.4 Path EXPIrESSIONScccvireierieriieteeietieiesiieieeeetesseessesseessessesseensessnns 175
4.4.4.1 Path EXpression SYNtaxccccceceeeveveereereneeneeesiesseeneennens 176
A4S JOIMS ittt ettt e 177
4.4.5.1 Inner Joins (Relationship JOins)..........ccocveveveveirveseneennennnnn 178
4.4.5.2 Left Outer JOINS ...ooovevveeieiieieeieieeeeiceee e 179
4.4.53 FetCh JOINSoovveieeieiieeeee e 180
4.4.6 Collection Member Declarationscccceeveeeerieecieniniieneeeeseeenn 180
4477 FROM Clause and SQLccocooieiiiiiieeie et 181
4.4.8 POLyMOTPRISIeovieiiiieieeieieeeeee et 181
4.4.9 DOWNCASHING...cveeuverireieiieieriieteeieesseseestessaessessaesseesenseessessesnsesseenses 181
4.5 WHERE ClaUSE ...c..ooveiiieiiiieicieiieiesi ettt e 182
4.6 Conditional EXPresSionscccciiiererterierieniinieniieite sttt ettt seceeesieeeens 183
4.6.1 LAETaAlS....eoeieieieeiieie e 183
4.6.2 Identification Variablesccccooveevinienenienenieieeeee e 184
4.6.3 Path EXPIeSSIONScccvvivvieiiieiieeiieniieieeeieeesieesaeeveesesessseesseesnseensnens 184
4.6.4 INPUL Parameters.....cccverveeiiieiieeiieniieieeeeeereeeteeieesresveeseeeeaeeeneas 184
4.6.4.1 Positional Parameters..........c.ccevcereererieiieniienincene e 184
4.6.4.2 Named Parameterscoceeoverieiereeniineenienieeeie e 185
4.6.5 Conditional Expression COmMpOSition.........cceecueerveervenvencreenvensuennnes 185
4.6.6 Operators and Operator Precedence.........cccocvveeueecivenieecieeneeeieennens 185
4.6.7 CompariSon EXPressions........ceecueeceerieeciiensieeneesieesieenreeseeesneenenes 186
4.6.8 Between EXPresSions.....c.ccceeiieerieniiiiienieeieesieeveeseeeveeseesveenenens 186
4.6.9 TN EXPIESSIONS ..veecuveriiieirieiieiieeieenieeereesteesteeseaeseaeeseessaeenseesssaenseens 187
4.6.10 LiKe EXPIESSIONS ..eevvieriierieiiieriieeiiesiieesieesireeseeseeesseesseesseesssesseenes 188
4.6.11 Null Comparison EXPressions........ccveeveeriveeneeneesiieeseenveeseessvesnnnes 189
4.6.12 Empty Collection Comparison EXpressions...........ccceeeeeeeeuverveennnenns 189
4.6.13 Collection Member EXPressionscccecceerviereeerieeneenieessieenveenieenns 190
4.6.14 EXIiStS EXPIESSIONS.....eceviieeieeiieriieeiiesiieeieesieeeveeseessseeseesseesnessseens 190
4.6.15 All of ANY EXPIESSIONS ...uveevvieiieeiiieiiieeieeiieeveeieeesieeseesveeseveenee e 191
4.0.16 SUDQUETICS ...eevveeiiieiiieeieeeieesreeieeetreesteeetesteeseaeeeaeeseesbeesaesnseesseesnns 191
4.6.17 Scalar EXPreSSIOnS.cccueeciierieriieeitiesieeneesreesseesseeesseeseessseesssessseenes 193
4.6.17.1 Arithmetic EXPressions.......ccceereereueereenieeneeereeneeenieenenens 193
4.6.17.2 Built-in String, Arithmetic, and Datetime Functional Expressions
193

4.6.17.2.1 String Functions...........cccceeevervecieniiesenieneeeeeene 193
4.6.17.2.2 Arithmetic Functions.............cceccvvvererveneerennnne. 194
4.6.17.2.3 Datetime Functions...........c.ccoeeeevuervenervecieeieennne 195

4.6.17.3 Invocation of Predefined and User-defined Database Functions195
4.6.17.4 Case EXPIeSSIONScceccvveriierieeeiieeniienieeiieeveeseeesseeseaesnnnes 196
4.6.17.5 Entity Type EXPressionscccecceereveereeenveenieenieeeneessveennnens 197
4.7 GROUP BY, HAVING ..ottt e 198

717 8

Oracle

Java Persistence 2.2, Maintenance Release

4.8 SELECT ClAUSE ...eeutetieiiieietieieeiesteeteieseeieite ettt eseebe e saeebesaeseeneeseeneeneas 199
4.8.1 Result Type of the SELECT Clause.......cceecveeiieciieniieneeeieeirenneenns 200

4.8.2 Constructor Expressions in the SELECT Clause........cccccceevvvennnenne 201

4.8.3 Null Values in the Query Result........ccccecveviiniiniienieeieeieeieeiee 202

4.8.4 Embeddables in the Query Result..........ccooveviieciiiniienieccie s 202

4.8.5 Aggregate Functions in the SELECT Clause.........ccccceccevvevireeennnnne. 203

4.8.5.1 EXAMPIES couvveeeriiiieeieeeie ettt et 204

4.8.6 Numeric Expressions in the SELECT Clause..........ccceecveeveirivennnnns 204

4.9 ORDER BY ClIaUSE......ccciiiiieriieeieeitiecieetee e esite st eeeeeeeesteesaeenseessaeensaessnas 205
4.10 Bulk Update and Delete Operations..............cceeeerereeeeeneesieneeneneeseeseenseenees 207
411 NUILVAIUES ..ottt ettt st e et aesaaeenne s 208
4.12 Equality and CompariSon SeMaNtiCS.........cueerueerreerreerueenieesiueesreenreesseeseesveens 209
413 EXAMPICS c.eveeieiieniieieiieiie ettt ettt sttt ettt ettt ne e e enaenneenees 210
4.13.1 SimPle QUETIES ...veevieierieieeeiieieeree et e eteeteesieeereesteesbeeeeeseseenseeennas 210

4.13.2 Queries with Relationshipsccceeveeeieiiiienieeiieciece e 210

4.13.3 Queries Using Input Parameterscccoecvveveeeieenieeseenreeieenee e 211

414 BNF ¢ttt ettt ettt eae et eenes 212
Chapter 5 Metamode] APc.ooieeeieeeeee ettt sa e neenees 219
5.1 Metamodel AP INterfaces.......cecvveriieiiieiie ittt 219
5.1.1 Metamodel INterfacecccveevieciieiiiieiesiieeeeee e 220

5.1.2 Type INLEIACE ..veeeevieieeeie ettt 221

5.1.3 ManagedType INterface.........cccuevvvieroieerieniieeecie e 222

5.1.4 IdentifiableType INterfacecccecvveeeiereeriieeieriieeeeee e 228

5.1.5 EntityType INterface.......ccecvvieiieriieniieeie ettt 230

5.1.6 EmbeddableType INterfaceccccevvveevieniiicieeeieeie e 230

5.1.7 MappedSuperclassType Interfaceccoecvvevveecieeniecseecienieeieeenee. 230

5.1.8 BasicType INterface.......cccevvieriieriieniieeie et 231

5.1.9 Bindable INterfacecccceevviiriieiiiiieeciecieeee e 231

5.1.10 Attribute INterfaceccvivvieeieeie e 232

5.1.11 SingularAttribute INterfacec.cccevvveeceeiienieecie e 233

5.1.12 Plural Attribute INterfacecccooveevvieriiniieieece e 234

5.1.13 CollectionAttribute INterfacecceeeveviierieecieeriecieeiee e 234

5.1.14 SetAttribute INterface........cceevueevieiiieiecicceecee e 235

5.1.15 ListAttribute INterface........c.ccccveveiereeniiniierieeee e 235

5.1.16 MapAttribute INterface..........ccceeveerieeiiieiiieiiecee e 235

5.1.17 StaticMetamodel ANNOtAtioNc.ceeeerevierieeeiieeriienieeiee e eseeninens 236
Chapter 6 L0174 12N SRR 237
6.1 OVEIVIEW ..veieiiieeiieeie ettt estte et ettt e e teesteessteesabe e s e ensseesseeteesnseesseessseenseenssens 237
6.2 MEtamOAEL......ccovieiieiiieiie et eaeeaeens 238
6.2.1 Static Metamodel CIaSSesccecvererrierieeieniieieieee e 238

6.2.1.1 Canonical Metamodel..........ccccoevirieririeninieeee e 238

6.2.1.2 EXAMPIC ..cuirieiieiieiieiiiiee et 240

6.2.2 BOOLSIIAPPING ...eeveeieieeiieiieieiieeieetete et ettt eseesseensesneeseeeessessneseeas 240

6.3 Criteria APT INterfaces........ccooviviieierierieeiet et 241

9 717

Oracle

Java Persistence 2.2, Maintenance Release

6.3.1 CriteriaBuilder Interfacecccooieviniiniiienice e 241
6.3.2 CommonAbstractCriteria Interface...........ccocceeereeninienenicnineens 270
6.3.3 AbstractQuery INterfacecceeevierveeiiiiniieeecie e 271
6.3.4 CriteriaQuery INterfaceccceevveviieiieiiiereeeie e 274
6.3.5 CriteriaUpdate INterface.........cceecueevueeniiiciieeeece e 279
6.3.6 CriteriaDelete INterfaceocevevieririiniiienieiee e 282
6.3.7 Subquery INterfaceccccveeveeriiiiieiie et 284
6.3.8 Selection INterface..........coceevirieiiiniiniiiet e 288
6.3.9 CompoundSelection INterface........c.ccecveevieriieerieniieieeeie e 288
6.3.10 ExXpression INterface........ccecuvevieecieeiieniieiie e 289
6.3.11 Predicate INterface..........cccevuerieiiirieniiieccece e 291
6.3.12 Path INterface.......ccoeeveiieiiiiieeee e 292
6.3.13 FetchParent Interface...........c.ceoueriiiiniiiinienenieccecceeeee e 294
6.3.14 Fetch INterface.......cccooveiiieiiiiiieiceiecceeee e 296
6.3.15 From INterface.......ccoooeeiieiiiiiiiiiie e 297
6.3.16 ROOt INTEITACEcc.eeiieiiiiieiiieiiec e 301
6.3.17 JoIn INterfaceccveiuieieiieiieiecee e 302
6.3.18 JOINTYPE veonvveeitieiieeeiee ettt ettt ettt e be e s beebaessaeesee e 303
6.3.19 PluralJoin INterfaceccceeverieneninieniiieeceeee e 303
6.3.20 CollectionJoin INterfaceccceveeieriieienienenecec e 304
6.3.21 SetJoin INterface........ccceoveeieririiiiiieicceee e 305
6.3.22 ListJoin INterface........ccooeeviirieniiiiieiiiere e 306
6.3.23 MapJoin INterface.........cccveviieiieecie e 307
6.3.24 Order INterfacecoouevuerieiiirienieieeeeeee e 308
6.3.25 ParameterExpression INterface..........ccoevveriieviieniiinieeie e 308
6.4 Criteria QUery APTUSAZE......c.ccoieiieeiieiiiciiecee et eee e e 309
6.5 Constructing Criteria QUETICScccvierrrerrierireeieereesreesreertreesseeseesreessseesseenes 309
6.5.1 CriteriaQuery Creation............cerveeeereererieeieseeeieseeeneseessenseeseseeens 309
6.5.2 QUETY ROOS..cuuiiiiiiiiieiiieitieeeet ettt 310
0.5.3 JOINS .eieuieiieie ettt ettt ettt ettt st b e e re et nae s te et e seenseraens 311
6.5.4 FetCh JOIMNS..uioiiiiiieiieiiecieee ettt ens 313
6.5.5 Path Navigationcccceererieiiiiieienieiieie et eennens 313
6.5.6 Restricting the Query Result.........cccoeveiiiiiiiiinieeiie e 314
6.5.7 DOWNCASTING.....ccueereeeieieeieiieiestieie st etestees e sseeaeeseeseeseessessaesseesnens 315
6.5.8 EXPIESSIONS.....ueeitiiieiieiieiietieetieteteesteseeetesseesesreensesseessesssensesssensenns 316
6.5.8.1 Result Types of EXPressionsocceevveeverireeerensieneenenennns 319
6.5.9 LIteralS.....ceeeieieeiieie ettt eens 320
6.5.10 Parameter EXPreSSIONSccvevereeierieeieniierieseeeeseesesseeseesseesaesnnas 320
6.5.11 Specifying the Select List.......cocceererienineneneiinieieeeeeeneseceeseenene 321
6.5.11.1 Assigning Aliases to Selection Items.......c.ccccecevevvcrenennenn. 323
6.5.12 SUDQUETICSeeveiieiieietieieeie ettt st sttt e e eneeeneenees 323
6.5.13 GroupBy and Havingccoeeeveeieiierieiieeesisee e 326
6.5.14 Ordering the Query Results.........ccoovevvieienierienieeee e 327
6.5.15 Bulk Update and Delete Operations..........c..coeeveeereeerencneneneneennes 329

6.6 Constructing Strongly-typed Queries using the javax.persistence.metamodel Inter-

faces331

6.7 Use of the Criteria API with Strings to Reference Attributesccccveevene 332
6.8 QuUEry ModifiCationccceevieieieieiieieeieiieiee et see e ense e e 334
6.9 QUETY EXCCULION ..c.eeeviiiieiie ettt ettt st ene e 335

717 10

Oracle

Chapter 7

Chapter 8

Java Persistence 2.2, Maintenance Release

Entity Managers and Persistence CONteXLSccouereererieneniirieneeienieeiesieenee s saees 337
7.1 PersiStenCe COMEEXLSevvierieiieeriieniiieieeeteeeteesreereestreeeeeteessseesseessseenseenssens 337
7.2 Obtaining an EntityManagercceeveeueriienieniieie e eiesieeieeeee e e enes 338

7.2.1 Obtaining an Entity Manager in the Java EE Environment.............. 338
7.2.2 Obtaining an Application-managed Entity Manager 339
7.3 Obtaining an Entity Manager Factoryccccoeoeviriiniiieneieneceeccee 339
7.3.1 Obtaining an Entity Manager Factory in a Java EE Container 340
7.3.2 Obtaining an Entity Manager Factory in a Java SE Environment 340
7.4 EntityManagerFactory Interface..........ccceviviciienieniieiie e 340
7.5 Controlling TranSaCtiONScceecverurerieriirieerieeteseeseseeeseeereseeeesseeeesseensesnes 344
7.5.1 JTA EntityManagers........c.cccueeeveerueeerieeriesieerieesreesseessesseesssessesssees 345
7.5.2 Resource-local EntityManagersccceceevverveecieenieeeseeneeesveenneenenes 345
7.5.3 The EntityTransaction Interface..........cccceevvvereiieciieiieeneeniecieeieeeee. 345
7.5.4 EXAMPIE c..voiiiieiieciie ettt et eaae e 347
7.6 Container-managed Persistence CONtEXLSccvvverveerireereeeiierieeiieeseeesieenenens 347
7.6.1 Persistence Context Synchronization TYpe........cccevveveveecrverveeveennen. 348
7.6.2 Container-managed Transaction-scoped Persistence Context 349
7.6.3 Container-managed Extended Persistence Contextccoeeuvenee. 349
7.6.3.1 Inheritance of Extended Persistence Context..................... 349
7.6.4 Persistence Context Propagation..........ccceecveeeueeecieenieesiieeseeenveeieennnes 350
7.6.4.1 Requirements for Persistence Context Propagation 350
7.6.5 EXAMPIES...ceiiieiiieiiieiiieeie ettt ettt ettt enaeenneas 351
7.6.5.1 Container-managed Transaction-scoped Persistence Context351
7.6.5.2 Container-managed Extended Persistence Context............ 352
7.7 Application-managed Persistence CONteXtSccccvervvrereerveiiveenieerieeneennens 353
7. 7.1 EXAMPIES...eevieiieiieiieiietieieee ettt ettt sae e ne s 354
7.7.1.1 Application-managed Persistence Context used in Stateless Session
Bean354
7.7.1.2 Application-managed Persistence Context used in Stateless Session
Bean355
7.7.1.3 Application-managed Persistence Context used in Stateful Session
Bean356
7.7.1.4 Application-managed Persistence Context with Resource Transac-
tion357
7.8 Requirements on the CONtAINETcccverieerieriieiierie e eeeeereeniee e e seee e 358
7.8.1 Application-managed Persistence Contexts..........coceeverevererverennenne. 358
7.8.2 Container Managed Persistence Contexts............cceevevuereererrenennnns 358
7.9 Runtime Contracts between the Container and Persistence Provider 358
7.9.1 Container ReSponsibilitiescccervueriieerieriieniienieesieereesieeeeee e 358
7.9.2 Provider Responsibilitiesccccvervueerieniiiiiienieereesiesreeiee e 360
710 Cache INEITACEccvieieeiieiiece ettt et ebe e e 361
7.11 PersistenceUnitUtil INterface........cccocvevveeciieiiieeiiieiierieeeeee e 362

Entity PaCKa@INgc.cocovieeieiiiiiecie ettt ettt eaee et e e st e et sebe e 363
8.1 PersiStenCe UNit........ccvvieiieiieeiieieie ettt s e e nens 363
8.2 Persistence Unit Packagingccoccoeveiieiiiieiiinieiiieeeee e 364

8.2.1 persistence.Xml fileccceevviriieiiiiiiieieieee e 365

11 71717

Oracle

Java Persistence 2.2, Maintenance Release

82,11 MAME..eeiiiiiiiiiiiieieteete ettt 366
8.2.1.2 tranSactionN-tyPe.......cceervuercurerreeieenreerieeiresveeseesneenenenneens 366
8.2.1.3 deSCIIPtON....ueeciiieiieciie ettt e 367
8.2.1.4 PIrOVIAETcccuiieeiieiie ettt ettt s 367
8.2.1.5 jta-data-source, non-jta-data-source...........cccceeeveerreerueennnens 367
8.2.1.6 mapping-file, jar-file, class, exclude-unlisted-classes 367
8.2.1.6.1 Annotated Classes in the Root of the Persistence Unit368
8.2.1.6.2 Object/relational Mapping Files...........cceccveuenenne 368
8.2.1.6.3 Jar Files....cccoevveneniiinieicicicecccenececee 368
8.2.1.6.4 List of Managed Classes.........cccceevuerrevenrerrnnnnne 370
8.2.1.7 shared-cache-modecccccovvevieeiiienieeiicie e 370
8.2.1.8 validation-modecccceeruieriieniieeie et 370
8.2.1.9 PIOPEILIES vovviiereeeiieeiieeiieiie e e etteeteeeteereeereeeaeeseeesnbeeneens 371
8.2.1.10 EXAMPIES...ueiiiiieeieiiieieeieecieeeie ettt 373
8.2.2 Persistence Uit SCOPEccueeveeriiriierieeriieeieeieenveeveestee e eseneseneens 375
8.3 persistence.Xml SChema..........cccueeciiiiiieiiiiiie e 376
Chapter 9 Container and Provider Contracts for Deployment and Bootstrappingcc........ 383
9.1 Java EE DeplOoymeNtcc.cccveeiieiiieiiieiieeiiesieeeieesiveeveeteeesveeseesvaeseveennee e 383
9.2 Bootstrapping in Java SE Environmentsccccceeevveveerieenieeeiiennieenveennee e 385
9.2.1 Schema GENeTationc.cccucoueeeirerierirenienenteneeneentereneeneeresieeresaens 386
9.3 Determining the Available Persistence Providers...........ccocvveveviereeciinieenieniens 386
9.3.1 PersistenceProviderResolver interface..........ccocoeceevenienenicncnnenncns 388
9.3.2 PersistenceProviderResolverHolder class.........ccccoeeeeviiieniniencnnnes 388
9.4 Schema Generation.........c.cceveruieieririinieiitcente sttt sttt naeene 389
0.4.1 Data Loading.......ccveeevieiiieiiienieeiieeeeeeestee e sveeeeesraeeseesveeeeens 392
9.5 Responsibilities of the Persistence Provider..........cccoocvevviriieneencieicieeieenneene, 392
9.5.1 javax.persistence.spi.PersistenceProvider.........c..c.cocevevieniiiinicncnnns 393
9.5.2 javax.persistence.spi.ProviderUtil.........ccccoovenieiininiiiieiieee 395
9.6 javax.persistence.spi.PersistenceUnitInfo Interfaceccoeevevvcecincncnenne. 398
9.6.1 javax.persistence.spi.ClassTransformer Interface..........cccccceeeveenneen. 402
9.7 javax.persistence.Persistence Classcccvecierieeieeiieeiiieiieerieeseesveesee e 403
9.8 PersistenceUtil INterface........ccceevvviviiieieeiiiiieeieeree et 407
9.8.1 Contracts for Determining the Load State of an Entity or Entity Attribute
408
Chapter 10 Metadata ANNOTATIONSc.eeueereieieeieierieeteseete st eteteeeesseeseesseensesseenseeseessesssensesnsensenes 411
TOT EEILY oottt ettt ettt ettt s et et et e aeeae s be e s 411
10.2 Callback ANNOLAtIONS ...cc.eeviriieniiiiiiiieiericete sttt 412
10.3 EntityGraph ANNOtatioNS.........ccceecvereeerierieerieniieieseeeeseeeteeeeeesseeae e eneesseennes 413
10.3.1 NamedEntityGraph and NamedEntityGraphs Annotations 413
10.3.2 NamedAttributeNode Annotationceceeveverreenieeneneeneneenennne 414
10.3.3 NamedSubgraph Annotation..........cccceevcveeiiierieeneerieeieeeeevee e 414
10.4 Annotations fOr QUETIES.......c.ecvierieeririeniieeieeiiesieereeseeesieeseresreesseesseessaesnseas 415
10.4.1 NamedQuery ANNOtAtiONcecereeereeeierereientieeeseenenseesaesseeneeneens 415
10.4.2 NamedNativeQuery ANNOtation...........cccerveereereeereereeseereeseseeneenenns 415

717 12

Oracle

Java Persistence 2.2, Maintenance Release

10.4.3 NamedStoredProcedureQuery ANnotation............cceevveeveereeenueennens 416
10.4.4 Annotations for SQL Result Set Mappings........cccccceevveecvvenvienreennnen. 418
10.5 References to EntityManager and EntityManagerFactoryc..cccceeeeeeniene 419
10.5.1 PersistenceContext ANNOtAtIONeeveervieerieerieeeieenieeieesreeseeenenns 419
10.5.2 PersistenceUnit ANNOtAtION.......ccceeeueereieriieriieereereeeieeieeeveenree e 420
10.6 Annotations for Type Converter ClasSes.........cceereervreereervenireeeieeneesveeseeenes 421
Chapter 11 Metadata for Object/Relational Mappingc.eccveecvierieeieeiienieeieesieeeseesvesveeveesnnes 423
11.1 Annotations for Object/Relational Mappingccccceveevierierieneniieneeneneene. 423
11.1.1 AcCess ANNOTATIONccveeiveieieeiieciieeeiie et et eieesveeereeeveeeaaeeaneeans 424
11.1.2 AssociationOverride ANNOtatioN........c..cceereievrierriiiireenreeeireesieneneenns 424
11.1.3 AssociationOverrides ANNOtationc..cceeevveevriiiireenreeeereeseeneneenns 427
11.1.4 AttributeOverride ANNOtationcceeevvieiiieviieniiiirieeree e eeveeereeans 428
11.1.5 AttributeOverrides ANNOLAtioNcceevreeieievrieriiiireeeeeeereeseeeeveeans 430
11.1.6 Basic ANNOTAtION........ccueiiviieitieeieciieeiie et eeveeieeeveeereeeveeeineseneenns 431
11.1.7 Cacheable ANNOtAtioNccceeeviiiiiiieiieiiie e 432
11.1.8 CollectionTable ANNOtationcccueevveerriierieeeiieerieeiee e e 433
11.1.9 Column ANNOAtiON.........c.eeeveerieirieereeeteeere et eeereereeeeeeereeseaeeeree e 435
11.1.10 Convert ANNOtAtION..........ccvievueeeiieieeereereeeeeeereeereereesareereeeaeeeereas 437
11.1.11 Converts ANNOLAtIONcceeivvieeriererieiiieeeeerteeereesreesreesseesreessneseneenns 440
11.1.12 DiscriminatorColumn Annotation...........c.ceeeveevveenreeeireenreesreesveeenns.s 441
11.1.13 DiscriminatorValue ANnotationcccccveevveeeeeeireeeineecreesreeneenes. 442
11.1.14 ElementCollection ANNOtation............cccueervieruveeireeieeeneeeereereeeeee e 443
11.1.15 Embeddable ANNotation..........c.cceevveeeerieriieniieeie e 444
11.1.16 Embedded ANNOtation............ccceevvievieeeiieniieiiieiee e e 445
11.1.17 Embeddedld Annotationcccceeeeeiieciiiiieenie e 446
11.1.18 Enumerated ANNOtationccccoveeeveeeerieeiieiiieeieesreeeie e eveevee e 447
11.1.19 ForeignKey ANNOtation...........ccecerieruereienueseenieneeseeseeeesseniessneneens 448
11.1.20 GeneratedValue ANNOtationc..cccveevvierrieniieeieeireeecieereeeve e 449
11.1.21 Id ANNOTALIONveieiieiiecie ettt ettt ve e e 451
11.1.22 IdClass ANNOLAtION.........c.eerureeereeirieeireeeeieereeeereereeereeeereesereereeseeennes 451
11.1.23 IndeX ANNOTAtION.......ccccocvieeuiireieereeeeeeetieereereeereeesreeeveeveeeereeareeeenas 452
11.1.24 Inheritance ANNOAtION..........cccveevviievieeeiecrieeiee et e eree et e v enes 452
11.1.25 JoinColumn ANNOtationc.eccveeeveeeerieirieniieereeireeeereeeereereeeene e 453
11.1.26 JoinColumns ANNOtAtION........cceeeeeeeriereiereeireeereeseeereesireereeeaee e 456
11.1.27 JoinTable ANNOAtiONccvveeuiierieeieeeiiecieeiee e 457
11.1.28 LOb ANNOTAtION ...cvviiviiciiieiieeiie ettt e eve e eave e 459
11.1.29 ManyToMany ANNOtation..........cceeveruereeeruereereerieseesaeeesressesseeneenns 459
11.1.30 ManyToOne ANNOtationcc.coevvereeieneeieeneeenenienieneesseseesiereneene 462
11.1.31 MapKey ANNOtation.........ccecuereeriereeerierieieeeesieseeseeseeeessesesseessens 464
11.1.32 MapKeyClass ANNOtAtIONc.cceeeeririeeeririnienienieienieeeneeeeeeeenens 465
11.1.33 MapKeyColumn ANNOtation..........ccoervereereieieerinienenieneneesienienaens 467
11.1.34 MapKeyEnumerated ANnotationccceceveeveeeeenieneenesneennns 468
11.1.35 MapKeyJoinColumn Annotationccoeeeevuecvereeenineenineeneneenens 469
11.1.36 MapKeyJoinColumns ANNOtation.........c.ceceeereeeeenierenenereenenennens 472
11.1.37 MapKeyTemporal ANnotationc.ccceeeereereereenenieceesieieseeeeenne 473
11.1.38 MappedSuperclass ANNOtAtioncccevveeeererverieriuerieriesieeeeneeans 473
11.1.39 MapsId ANNOLAtIONcc.eevveeireierieriieie et 474

13 717

Oracle

Java Persistence 2.2, Maintenance Release

11.1.40 OneToMany ANNOtatioN..........cccvervueereeerueerveesieerreeesseeseessseenseesseenes 475
11.1.41 OneToOne ANNOtAtIONcevereereerierierienieete sttt eeeeie e 477
11.1.42 OrderBy ANNOtation.........ccceevierieeiiieiieeieeiiieieeiee e e seesveeseeeeene e 480
11.1.43 OrderColumn ANNOtation...........ceeereeiereeiienienienienee e 482
11.1.44 PrimaryKeyJoinColumn ANNotation...........ceecvveveeerieerieescreenveenneenns 484
11.1.45 PrimaryKeyJoinColumns Annotationcecceeeveereeesveenvesveenneens 486
11.1.46 SecondaryTable ANNOLAtioNccceevveereervierieeniieerieeseeeieeneeeneenns 487
11.1.47 SecondaryTables ANNOtatioN.........ceeveeeverieerieniieesieeieeieenveeneee e 489
11.1.48 SequenceGenerator ANNOtAtION........ccveeveerirerreerieseeeieerireeaeesree e 490
11.1.49 SequenceGenerators ANNOLAtIONcecveervverveerreeerieereesieeneeeeneenns 491
11.1.50 Table ANNOtationcccoevuiriiiiiiirieieeere et 491
11.1.51 TableGenerator ANNOtAtIONcevveeeerieerieriieieiteieeeeeie e 492
11.1.52 TableGenerators ANNOTATIONoeeeruereenierienierieieeienie e 494
11.1.53 Temporal ANNOtAtION.cccveerierreerieeeieereeereerresereesreeeseeeeeesnreeseenes 495
11.1.54 Transient ANNOTATIONeeeerirtereeriereenie sttt ettt 496
11.1.55 UniqueConstraint ANNOtAtIONccueeeveerueerieeieeiieeeieereenveeaeesreeenns 496
11.1.56 Version ANNOLAtiON.........c.eveereriererieieeienieeete ettt 497
11.2 Object/Relational Metadata Used in Schema Generationcccceevvevuvenneen. 497
11.2.1 Table-level elements..........ccceeeuierieeieeiiiiiieene e 498
T1.2. 1.1 Table it 498
11.2.1.2 INhETItANCE ..eveeevieiiieieecie ettt s 499

11.2.1.3 SecondaryTable.........ccceeeierieniieiiieeiieieecie e 499

11.2.1.4 CollectionTable..........cccevierireerieiiieieeie et 499

11.2.1.5 JOINTADBIE ..coivieiieiieeeecee et 499
11.2.1.6 TableGenerator.........cccueecveereeeieeiieereenree e eieeeresereesneeenees 499

11.2.2 Column-level elements...........cceeeeeeriierieeiiieeieeneecveeieeee e 499
11.2.2.1 ColuMN..ceiiiiiiiiiieiet e 500

11.2.2.2 MapKeyColumn........ccoeeceeeieeniiniiesieeie e sveeieeseve e 500

11.2.2.3 Enumerated, MapKeyEnumerated............ccccceevvrrrieneennnn. 500

11.2.2.4 Temporal, MapKeyTemporal..........ccccoceerrrrrveniieneenreennen. 501

T1.2.2.5 LOD teieiiiieie ettt et 501
11.2.2.6 OrderColumncoceevuerierinieniieieniieie e e 501

11.2.2.7 DiscriminatorColumnccocceeerienenienenienenieieeeeene 501

T1.2.2.8 VEISION ..euiiniiiiiiieiiieiteetceee ettt et 501

11.2.3 Primary Key mappings......ccccccceervververreenieeneenieereeseeeseeseesnseenseens 501
T1.2.3.1 Td et e 501

11.2.3.2 EmbeddedId........coooiiiiiiiiiieeecee e 502

11.2.3.3 GeneratedValue..........ccccevieriiiiniiieniiienee e 502

11.2.4 Foreign Key Column Mappingscceeeveeereeruercreenveereeeneessveesneens 502
11.2.4.1 JoInColUuMN ...c.eeviiiiiiiieiiiieie e 502

11.2.4.2 MapKeyJoinColumn..........cceevveriienieenieeniecieeiee e 503

11.2.4.3 PrimaryKeyJoinColumnccceevveeveenieeiieie e, 503

11.2.4.4 ForeignKeycccveiiiieiieieiieeieie et e 503

11.2.5 Other EIements......c.coouiviiriiiiniieenieeiesiieee e 504
11.2.5.1 SequenceGeneratorcccceerueerveerieenieesieeserenaeesseesnesnnens 504

11.2.5.2 TNACX ettt e 504

11.2.5.3 UniqueCoNStraintccueeveeiereeeeerierreneeesieseeeeesesneseenens 504

11.3 Examples of the Application of Annotations for Object/Relational Mapping 505
11.3.1 Examples of Simple Mappingscccceeeeevreverierieneeienieeneseeneenenns 505

717 14

Oracle

Java Persistence 2.2, Maintenance Release

11.3.2 A More Complex EXamplecccvvevvieeiieiiieniieiieie e eeie e 508
Chapter 12 XML Object/Relational Mapping Descriptor.........cocceveriererieienieiinicene e 513
12.1 Use of the XML DESCIIPLOL...c.uecuieieeiieiieieiieiestiereereeieseeseesnesesssenseeseessanns 513
12.2 XML Overriding RUIES.........cooeiiiiiiiiiiieieeec e 514
12.2.1 persistence-unit-defaults Subelements...........ccccceeevevvenceeneeeceeenenne 514
12.2. 1.1 SCHEMA ..o 514
12.2.1.2 CAtAlOZ...icvii ettt 514
12.2.1.3 delimited-identifiers..........ccoceeverieieniniieieneeeeeeee 515

12.2. 14 @CCESS .eueiuiiiieiieiiestiette ettt ettt st sttt 515
12.2.1.5 caSCAAE-PEISIST..uirruriiiieiieeiieeieetieieeereesteeeie e eaee s 515
12.2.1.6 entity-liStENETSccvieireeiieieeeie et seee e 515

12.2.2 Other Subelements of the entity-mappings elementccc........ 516
12.2.2.1 PACKAZE ...vveevieeieeieeeee e 516
12.2.2.2 SCHEMA ..ot 516
12.2.2.3 CALAlOZ...ecviieiieeiecieeeeee et 516
12,2214 @CCESS wevveuiiiienieetiestieiie ettt ettt st st sb et 516
12.2.2.5 SEQUENCE-ZENETALOTeeevveeereenrieereereeesreereesreeaeessreeseennnes 516
12.2.2.6 table-geNneratorcccuveeueeerieeeieeiieireereesteeeieeeresereeseeennes 517
12.2.2.7 NAMEA-QUETY ..eeveeeiieiieiieeieeeieeieesreereeseveesaeeeeveeeaessneenees 517
12.2.2.8 Named-native-qUETYc.cccvveerueerurerreeneeseeeserenereeseeenneenenes 517
12.2.2.9 named-stored-procedure-query.........ccoceerveeerreenveerreesnennnns 517
12.2.2.10 sql-result-set-mappingccceeveereeeereeruerieeneessieesvenveenns 517
12.2.2. 11 @NEILY voeeeeiieeiieeee ettt e s aae s 517
12.2.2.12 mapped-suUperclass........cccveeeeeeeereessieeiieneeeneesieeseesneenns 518
12.2.2.13 embeddable..........ccooueiieiiniiiieiee e 518
12.2.2.14 CONVEITRT ..eenieiieiieeiieieeiiesieette ettt sttt 518
12.2.3 entity Subelements and AttribULescccveevveeeceeereerieeieeseeeeeeeenn 518
12.2.3.1 metadata-complete........cccevvuverieriienieeieenie e 518
12.2.3.2 @CCESS wevveuiiriieniieiietieiie ettt ettt sttt sttt 518
12.2.3.3 cacheableccooeeiiiiiniiieie e 519
12,2314 NAME..c..iiiiiiiiiiiit ettt 519
12.2.3.5 t@DIE oo 519
12.2.3.6 secondary-table.........ccceceeeriierieniieieeeere e 519
12.2.3.7 primary-Key-join-column............ccccveemvreeriercieerieenieeieeenne. 519
12.2.3.8 1d-ClasS .ceuieiieiieeiieiieeee e 519
12.2.3.9 INRErtanceccecevierienieriiiiececeee e 519
12.2.3.10 discriminator-valueccceecvereeniinienenienceiencenee e 520
12.2.3.11 discriminator-Column.........c.oocuevuereenenienenieenieceeesieae 520
12.2.3.12 SEQUENCE-ZENETALOT ...c.uveeuvrreerieneeeereererenereeseeeeeeeaesnreeaeenens 520
12.2.3.13 table-eNerator.......ccceccveerieriieeieeiieeieeieeseeesreeeaeeeaesene e 520
12.2.3.14 attribute-oVerrideccceveeierrieniiniene e 520
12.2.3.15 association-oVerride........oceeeveveeiereenenienieiienceee e 520
12.2.3.16 CONVEIT .ontieiiiieiiieiieiceiie sttt 521
12.2.3.17 named-entity-graph.......cccceeeeevieeiiieniieeiieie e e 521
12.2.3.18 NAMEA-QUETYeivienieiieiieeieieeee et 521
12.2.3.19 named-native-qUETYccceerverreruireerieseereeeienseeseeseeeeeseeas 521
12.2.3.20 named-stored-procedure-qUery..........cceveruervenrerreereernennnnn 521

15 71717

Oracle

Java Persistence 2.2, Maintenance Release

12.2.3.21 sql-result-set-mappingcccceeceererreereeneneenenieieeeniens 522
12.2.3.22 exclude-default-liSteners...........cccevereinerinienenieiceieene 522
12.2.3.23 exclude-superclass-listeners..........ccocueeeeeervencreesreeaieeneennne. 522
12.2.3.24 entity-liStENETS....cccvveeieeieeeieeiieeieeeeee e eere e 522

12.2.3.25 pre-persist, post-persist, pre-remove, post-remove, pre-update,
post-update, post-load522

12.2.3.26 ttrIDULES...ccuveeieieciieie ettt ens 522
12.2.3.26.1 0 eioiiieiiceeee s 522
12.2.3.26.2 embedded-idccceeviririniniieeee e 523
12.2.3.26.3 DASIC...erueeerieieieieeetiee ettt 523
12.2.3.26.4 VETSION ..eoruvieiieeiiesiieeieeiieeteeieeeeeeseeeveeseaasnnee e 523
12.2.3.26.5 MaNy-t0-0MNC.....ccceervirerierrierrrenreenieeerreeseaesreenseeens 523
12.2.3.26.6 ONE-TO-MANYcccuririrereeerierireeieesreenreenreeeeensneens 523
12.2.3.26.7 ONE-T0-ONC.....eveeerierieeieeiieeieeiieereeseeereenereeseenes 523
12.2.3.26.8 MaNy-t0-MANYcccvveerrerrrererenreeeeeenreesseenseensneens 523
12.2.3.26.9 element-collectioncccecveeveenieeeceeesiienieeieenns 523
12.2.3.26.10 embedded..........ccoeoerieoiiiiiiicieeee e 523
12.2.3.26.11 tranSieNnt ...ccceeeeveerveecieeeieeeeecieeieeeveeiee e eseae e 523

12.2.4 mapped-superclass Subelements and Attributescccceeerveneennen. 524

12.2.4.1 metadata-complete.........ccoecvevreeeieriieienieeie e 524

12.2.4.2 @CCESS weeeuveeirieieeitieeieeeiteeit et e st e sbe ettt et e st e e be e s eaneens 524

12.2.4.3 0d-ClaSS couveeeieeiieieeieee et e 524

12.2.4.4 exclude-default-listenerscocevueeeereeienieiesiee e 524

12.2.4.5 exclude-superclass-liSteners............ccereveueriesieneeeneeseeeene. 524

12.2.4.6 entity-liSteNErS......eevieeieeeeeieeiiee et 524

12.2.4.7 pre-persist, post-persist, pre-remove, post-remove, pre-update,
post-update, post-load525

12.2.4.8 AttrTIDULES...ccvieeieeeiieeie ettt stee et reeereesee e e e 525
12.2.4.8. 1 Ad e 525
12.2.4.8.2 embedded-id.......cc.ccovveeviiioiieiiiiieeeee e 525
12.2.4.8.3 DASIC..uiiiiiieeiicie e 525
12.2.4.8.4 VEISION ..couvviiiiiieeeiee e 525
12.2.4.8.5 MANY-0-0NC...ccveerrrererirrreereenreeeieeseeenereeereenaeenns 525
12.2.4.8.6 ONE-tO-MANYceeeriererieireeieenieesieeneeenereeereenaeenes 525
12.2.4.8.7 ONE-T0-ONC....uvviieerieeeiieeeeieee et 525
12.2.4.8.8 MaNY-tO-MANY ...ccuverrrerrrrerieenieeriiesveereesereeneesenes 526
12.2.4.8.9 eclement-collectionccceeeevveiecieeeciieeeiieenee. 526
12.2.4.8.10 embedded.........ccoooiieeiieciiiiieee e, 526
12.2.4.8. 11 transientcceeeeeuviieeiiieeeeiee e 526

12.2.5 embeddable Subelements and Attributesccccoevveeeeieeeeiieeenennn. 526

12.2.5.1 metadata-complete.........cocverveeneeiiieenieniieieeee e 526

12.2.5.2 BCCESS wiiioueiieeiie ettt e ee e et e e e e eaae e 526

12.2.5.3 AtrIDULES...oeeieiieeeeiieceeeee e et 526
12.2.5.3.1 DASIC.cuviiieiiieiiie e 527
12.2.5.3.2 MANY-L0-0NC...ccuveerrrerrrierreereenreeeieeneienereesreenneens 527
12.2.5.3.3 ONE-t0-MANY...ccvieriereiieiieeieeniee e esieeeeveeieeeaee e 527
12.2.5.3.4 ONE-T0-ONC...cuvviieiiieeeiie et 527
12.2.5.3.5 mManNy-to-MaNYc.cccvverrrrereerrreerrrenveereesreeneenenes 527
12.2.5.3.6 clement-collectionccoeeevvveieciireciiiiecieeeee. 527
12.2.5.3.7 embedded..........ccooviiieiiiiiiie e, 527

717 16

Oracle

Java Persistence 2.2, Maintenance Release

12.2.5.3.8 transSieNnt.........coceuiieeiuiieeiiieeeiee et 527

12.3 XML SCREMA.......ooiiiiiiiiiieeceeeeeeee et et 528

Chapter 13 Related DOCUMENLSeieiieiieiiieiie et eetee ettt et e teeseae st e e e e eraeesbeesnbeenseesssaensaenseas 565
Appendix A REVISION HISTOTY ...ovviiieiiiiicieceee ettt ettt st st e e nsaesne s 567
A.1 Maintenance Release Draft.............cccooeiiiiiiiiiiiiiiiccce e 567

17 7/17/17

Oracle

Java Persistence 2.2, Maintenance Release

717 18

Oracle

Java Persistence 2.2, Maintenance Release

List of Tables

Table 1 Definition of the AND OPEIatOrcceeivieiiieiiieeiieeeieeieesteeeteertesee bt e steeesteestaessaeesseesssesseesssesseesseesns 208
Table 2 Definition 0f the OR OPEIatorcc.eeiiiriieciieieii ettt ettt e et seesse e e saesseessesseensenseenes 209
Table 3 Definition 0f the NOT OPEIator......ccccuiecuieriieriieeieeiierie et e stee e etee e eteesaeesteessaessbeesseeseesssaesssessseens 209
Table 4 Access ANNOtatioN EIEMENTS.......ccceiiuieiiieiieiiecie ettt ettt et sae e s e st e saaeesaeessnesnbeesaesnsaesseeens 424
Table 5 AssociationOverride Annotation EICMENTSccueviriiiriieriiiiereciese et 425
Table 6 AssociationOverrides AnNotation EISMENTScccuvicviieiieeiiiiiieiiecie et eesaee e 427
Table 7 AttributeOverride Annotation EISMENTSceevuieiiiiiiiiieiit ettt saeeae v eaeesaee e 428
Table 8 AttributeOverrides AnNnotation EICMENTS.........cc.eecieriiiierieieieeieieeesiee et eee e 430
Table 9 Basic ANNotation EICIMENTScccueiiiieiiieiieiie ettt ettt e ette et sveesae st e ssaesabeessneenseesssesnsaesseeans 432
Table 10 Cacheable ANNotation EISMENLSccueevieiiiiiiieiiieiiecie ettt sve ettt e eveeseee st e saennseesreeenseennes 432
Table 11 CollectionTable Annotation EICMENLScccecviriiiiieiieieiieiesie ettt eee s 434
Table 12 Column Annotation EICMENTSccc.ieciieriieiiieiieeie ettt seesve et siaeeaeeeeesnbaessaesnseesreeenseennes 436
Table 13 Convert ANNOtation EICMENTSccuiiviiiiiiiiieiieeie ettt eteesee s veeteestaeeveeseessbeessaessseesseeenseenses 437
Table 14 Converts ANNotation EICMENtS.c..ccuiiieriiecieriiiie ettt et sae e nae e esessaesenneens 440
Table 15 DiscriminatorColumn Annotation EISMENtS........cccueeriieeieriiieiieeieecie ettt 442
Table 16 DiscriminatorValue Annotation EICMENtS..........c.cccuiiiiieiiieiieiieeie et 443
Table 17 ElementCollection Annotation EICMENLSccccuervieiieriieiiereiie ettt eee e eraensesneens 444
Table 18 Enumerated ANnotation EICMENTS.........c.ccccieiiiiiieiieiiiecieciiete ettt eeve e s esreeenbeenees 448
Table 19 ForeignKey Annotation EIEMENtS........c.cccieiiiiiieiieiie ettt ettt sre e aseesaeeenseenees 449
Table 20 GeneratedValue Annotation EICMENtSc.cecerieiiiiiiiieiieiecieie ettt 450
Table 21 IdClass ANNotation EISMENLScccuiiiiieiieiiieiieeie ettt eitete et seeete et sibeeaeeeeeessaessaesnseesseesnsesnses 451
Table 22 Index ANNotation EISMENLS........cc.cccuiiiieiiieeiieiieeieecte ettt steeste e e seaeeebeestaeesbeessbesnssessseesseeensennses 452
Table 23 Inheritance ANNOtation EICMENTScceeiiriierieriieiiee ettt et se e e se e s e eseesesneens 453
Table 24 JoinColumn Annotation EISMENLSc.cccceeiiiiiieriieiiecie ettt eve e ee s ea e eesreeenseenes 454
Table 25 JoinColumns Annotation EIEMENTSccceeiiiiiiieiiiiiieeie ettt et saeeenbeenees 456
Table 26 JoinTable ANNnotation EISMENLScccueiiiieriieieii ettt e see et eeeseeennesnaennens 458
Table 27 ManyToMany Annotation EISMENTScceccvieriieriiiiiieiieciieecee et e e enee 460
Table 28 ManyToOne AnNnotation EIEMENTS..........cccieiiiiiiieiieiiieeie ettt eve et esve e seesba e saesnseesreeenseenees 463
Table 29 MapKey Annotation EICMENtScc.ecieiiiriierienieieee ettt sttt eee s esae e esesseesesneens 464
Table 30 MapKeyClass Annotation EICMENTScccoccviiiiieriiiriieeieeiieeeete ettt eve e s saae e sreeenbeeneee 465
Table 31 MapKeyColumn Annotation EIEMENTSc.eeevieiiieiieeiieiie ettt et eaeesveessee e 467
Table 32 MapKeyEnumerated Annotation EISMENts.........c.cccceoeririirininininineiceeicecrcsce st 469
Table 33 MapKeyJoinColumn Annotation EISMENtSccceeveviiiieriiiiiienieeie ettt ee e seve e 470
Table 34 MapKeyJoinColumns Annotation EISMENTS........ccueiriierieriiiiiieeieerie ettt seee e 473
Table 35 MapKeyTemporal Annotation EISMEnts..........cccccveririreniininieniiiceiieseeeeseteseeteteie e 473
Table 36 Mapsld ANNotation EICMENTS.........ccuiiviiiiiiiiieiieeie ettt ve ettt ebe e s ee st esaesnseesseeenseenees 474
Table 37 OneToMany ANNotation EICMENTS.........ccceeiuiiiiieiiieiie ettt ete et e saeeeseeesebeebeenaee s sreeenseenees 476
Table 38 OneToOne Annotation EICMENLScceecieriieiieririeee ettt ettt e e e esesseesenneens 478
Table 39 OrderBy Annotation EICMENTSc.cociiiiiiiiiieiieeie ettt ete et eesntaessaesnbeeseeeenseenees 481
Table 40 OrderColumn Annotation EICMENtS.c.ccuieoieriiriiirieie ettt 483
Table 41 PrimaryKeyJoinColumn Annotation EIeMents..........c..ccoevveieiieniiiieciieieiecee et 485
19 717/17

Oracle

Java Persistence 2.2, Maintenance Release

Table 42 PrimaryKeyJoinColumns Annotation EIEMENts...........ccccueevuieiiiieiieiiiiiiiesee et 486
Table 43 SecondaryTable AnNnotation EICMENLSc..cecierieiiiieiieeiieieeeie ettt ettt eeeeebeestaesnaeenneas 488
Table 44 SecondaryTables Annotation EISMENtS............ccieriirieriieiiriieieie ettt 489
Table 45 SequenceGenerator ANNotation EIEMENtS..........cccveiiiiiiiiiiiiieeie ettt e 490
Table 46 SequenceGenerators AnNnotation EISMENEScceeviieiiiiiiiiiieiie et 491
Table 47 Table ANNOtation EISMENTScc.eeviiiiieiiiieiieieiete ettt ettt et ese e sessaenseensenns 492
Table 48 TableGenerator Annotation EICMENtSccccueiiiiiiiiiniiiiii e 493
Table 49 TableGenerators Annotation EICMENTS........cccueviiiiiriiniiiiii e 494
Table 50 Temporal Annotation EICMENSc.ccieiiiieiiiieiieiieie ettt ese e s saense s nes 495
Table 51 UniqueConstraint ANnotation EISMENtS..........cceevieiiieiieniieeceeeie ettt eereete et snve e 496
71717 20

Oracle

Chapter 1

Java Persistence 2.2, Maintenance Release

Introduction

1.1

This document is the specification of the Java API for the management of persistence and object/rela-
tional mapping with Java EE and Java SE. The technical objective of this work is to provide an
object/relational mapping facility for the Java application developer using a Java domain model to man-
age a relational database.

The Java Persistence 2.2 specification enhances the Java Persistence API with support for
repeating annotations; injection into attribute converters; support for mapping of the
java.time.LocalDate, java.time.LocalTime, java.time.LocalDateTime, java.time.OffsetTime,
and java.time.OffsetDateTime types; and methods to retrieve the results of Query and
TypedQuery as streams.

The Java Persistence 2.1 specification added support for schema generation, type conver-
sion methods, use of entity graphs in queries and find operations, unsynchronized persis-
tence contexts, stored procedure invocation, and injection into entity listener classes. It also
includes enhancements to the Java Persistence query language, the Criteria API, and to the
mapping of native queries.

Expert Group

1.2

This revision to the JPA specification is based on JPA 2.1, whose work was conducted as part of JSR
338 under the Java Community Process Program. This specification is the result of the collaborative
work of the members of the JSR 338 Expert Group: akquinet tech@Spree: Michael Bouschen; Ericsson:
Nicolas Seyvet; IBM: Kevin Sutter, Pinaki Poddar; OW2: Florent Benoit; Oracle: Linda DeMichiel,
Gordon Yorke, Michael Keith; Pramati Technologies: Deepak Anupalli; Red Hat, Inc.: Emmanuel Ber-
nard, Steve Ebersole, Scott Marlow; SAP AG: Rainer Schweigkoffer; Sybase: Evan Ireland; Tmax Soft
Inc.: Miju Byon; Versant: Christian von Kutzleben; VMware: Oliver Gierke; individual members: Mat-
thew Adams; Adam Bien; Bernd Mueller; Werner Keil.

The work of the JSR 338 Expert Group was conducted using the jpa-spec.java.net project.

Document Conventions

The regular Times font is used for information that is prescriptive by this specification.

The italic Times font is used for paragraphs that contain descriptive information, such as notes describ-
ing typical use, or notes clarifying the text with prescriptive specification.

The Courier font is used for code examples.

21 7/17/17

Oracle

Introduction Java Persistence 2.2, Maintenance Release Document Conventions

The Helvetica font is used to specify the BNF of the Java Persistence query language.

This document is written in terms of the use of Java language metadata annotations. An XML descriptor
(as specified in Chapter 12) may be used as an alternative to annotations or to augment or override
annotations. The elements of this descriptor mirror the annotations and have the same semantics. When
semantic requirements are written in terms of annotations, it should be understood that the same seman-

tics apply when the XML descriptor is used as an alternative.

71717 22 JSR-338 Maintenance Release

Oracle

The Entity Class

Chapter 2

2.1

Java Persistence 2.2, Maintenance Release Entities

Entities

An entity is a lightweight persistent domain object.

The primary programming artifact is the entity class. An entity class may make use of auxiliary classes
that serve as helper classes or that are used to represent the state of the entity.

This chapter describes requirements on entity classes and instances.

The Entity Class

The entity class must be annotated with the Ent ity annotation or denoted in the XML descriptor as an
entity.

The entity class must have a no-arg constructor. The entity class may have other constructors as well.
The no-arg constructor must be public or protected.

The entity class must be a top-level class. An enum or interface must not be designated as an entity.

The entity class must not be final. No methods or persistent instance variables of the entity class may be
final.

JSR-338 Maintenance Release 23 7/17/17

Oracle

Entities

2.2

Java Persistence 2.2, Maintenance Release Persistent Fields and Properties

If an entity instance is to be passed by value as a detached object (e.g., through a remote interface), the
entity class must implement the Serializable interface.

Entities support inheritance, polymorphic associations, and polymorphic queries.

Both abstract and concrete classes can be entities. Entities may extend non-entity classes as well as
entity classes, and non-entity classes may extend entity classes.

The persistent state of an entity is represented by instance variables, which may correspond to Java-
Beans properties. An instance variable must be directly accessed only from within the methods of the
entity by the entity instance itself. Instance variables must not be accessed by clients of the entity. The
state of the entity is available to clients only through the entity’s methods—i.e., accessor methods (get-
ter/setter methods) or other business methods.

Persistent Fields and Properties

The persistent state of an entity is accessed by the persistence provider runtimell either via JavaBeans
style property accessors (“property access’) or via instance variables (“field access”). Whether persis-
tent properties or persistent fields or a combination of the two is used for the provider’s access to a
given class or entity hierarchy is determined as described in Section 2.3, “Access Type”.

Terminology Note: The persistent fields and properties of an entity class are generically
referred to in this document as the “attributes” of the class.

The instance variables of a class must be private, protected, or package visibility independent of
whether field access or property access is used. When property access is used, the property accessor
methods must be public or protected.

It is required that the entity class follow the method signature conventions for JavaBeans read/write
properties (as defined by the JavaBeans Introspector class) for persistent properties when property
access is used.

In this case, for every persistent property property of type T of the entity, there is a getter method, get-
Property, and setter method setProperty. For boolean properties, isProperty may be used as an alterna-
tive name for the getter method.!?!

For single-valued persistent properties, these method signatures are:

e T getProperty()

e void setProperty(T t)

(1]

(2]

The term "persistence provider runtime" refers to the runtime environment of the persistence implementation. In Java EE envi-
ronments, this may be the Java EE container or a third-party persistence provider implementation integrated with it.

Specifically, if getX is the name of the getter method and setX is the name of the setter method, where X is a string, the name of the
persistent property is defined by the result of java.beans.Introspector.decapitalize(X).

7/17/17

24 JSR-338 Maintenance Release

Oracle

Persistent Fields and Properties Java Persistence 2.2, Maintenance Release Entities

Collection-valued persistent fields and properties must be defined in terms of one of the following col-
lection-valued interfaces regardless of whether the entity class otherwise adheres to the JavaBeans
method conventions noted above and whether field or property access is used: java.util.Collec-
tion, java.util.Set, java.util. ListB], java.util.Map. The collection implementa-
tion type may be used by the application to initialize fields or properties before the entity is made
persistent. Once the entity becomes managed (or detached), subsequent access must be through the
interface type.

Terminology Note: The terms “collection” and “collection-valued” are used in this specifica-
tion to denote any of the above types unless further qualified. In cases where a
java.util.Collection type (or one of its subtypes) is to be distinguished, the type is
identified as such. The terms “map” and “map collection” are used to apply to a collection of
type java.util.Map when a collection of type java.util.Map needs to be distin-
guished as such.

For collection-valued persistent properties, type 7 must be one of these collection interface types in the
method signatures above. Use of the generic variants of these collection types is encouraged (for exam-
ple, Set<Order>).

In addition to returning and setting the persistent state of the instance, property accessor methods may
contain other business logic as well, for example, to perform validation. The persistence provider run-
time executes this logic when property-based access is used.

Caution should be exercised in adding business logic to the accessor methods when property
access is used. The order in which the persistence provider runtime calls these methods when
loading or storing persistent state is not defined. Logic contained in such methods therefore
should not rely upon a specific invocation order.

If property access is used and lazy fetching is specified, portable applications should not directly access
the entity state underlying the property methods of managed instances until after it has been fetched by
the persistence provider.

If a persistence context is joined to a transaction, runtime exceptions thrown by property accessor meth-
ods cause the current transaction to be marked for rollback; exceptions thrown by such methods when
used by the persistence runtime to load or store persistent state cause the persistence runtime to mark
the current transaction for rollback and to throw a PersistenceException that wraps the applica-
tion exception.

Entity subclasses may override the property accessor methods. However, portable applications must not
override the object/relational mapping metadata that applies to the persistent fields or properties of
entity superclasses.

(3]

(4]

Portable applications should not expect the order of a list to be maintained across persistence contexts unless the OrderColumn
construct is used or unless the OrderBy construct is used and the modifications to the list observe the specified ordering.

Lazy fetching is a hint to the persistence provider and can be specified by means of the Basic, OneToOne, OneToMany,
ManyToOne, ManyToMany, and ElementCollection annotations and their XML equivalents. See Chapter 11.

JSR-338 Maintenance Release 25 7/17/17

Oracle

Entities

Java Persistence 2.2, Maintenance Release Persistent Fields and Properties

The persistent fields or properties of an entity may be of the following types: Java primitive types,
java.lang.String, other Java serializable types (including wrappers of the primitive types,
jJava.math.BigInteger, java.math.BigDecimal, jJava.util.Date,
Java.util. Calendar[s], java.sqgl.Date, java.sqgl.Time, java.sqgl.Timestamp,
byte[], Byte[], char[], Character([], java.time.LocalDate, java.time.Local-
Time, java.time.LocalDateTime, java.time.OffsetTime, java.time.OffsetDa-
teTime, and user-defined types that implement the Serializable interface) ; enums; entity types;
collections of entity types; embeddable classes (see Section 2.5); collections of basic and embeddable
types (see Section 2.6).

Object/relational mapping metadata may be specified to customize the object/relational mapping and
the loading and storing of the entity state and relationships. See Chapter 11.

(5]

Note that an instance of Calendar must be fully initialized for the type that it is mapped to.

7/17/17

26 JSR-338 Maintenance Release

Oracle

Persistent Fields and Properties

2.2.1 Example
@Entity

Java Persistence 2.2, Maintenance Release

public class Customer implements Serializable {

private Long id;

private String name;

private Address address;

private Collection<Order> orders = new HashSet();

private Set<PhoneNumber> phones = new HashSet();

// No-arg constructor
public Customer () {}

@Id // property access is used
public Long getId() {

return id;

}

public void setId(Long id) {
this.id = id;

}

public String

return name;

}

getName () {

public void setName (String name) {

this.name =

}

name;

public Address getAddress () {
return address;

}

public void setAddress (Address address) {
this.address = address;

}

Entities

JSR-338 Maintenance Release

27

7/17/17

Oracle

Entities Java Persistence 2.2, Maintenance Release Access Type

@OneToMany
public Collection<Order> getOrders () {
return orders;

}

public void setOrders (Collection<Order> orders)
this.orders = orders;

}

@ManyToMany
public Set<PhoneNumber> getPhones () {
return phones;

}

public void setPhones (Set<PhoneNumber> phones) {
this.phones = phones;

}

// Business method to add a phone number to the customer

public void addPhone (PhoneNumber phone) {
this.getPhones () .add (phone) ;
// Update the phone entity instance to refer to this customer
phone.addCustomer (this) ;

}

2.3 Access Type

2.3.1 Default Access Type

By default, a single access type (field or property access) applies to an entity hierarchy. The default
access type of an entity hierarchy is determined by the placement of mapping annotations on the
attributes of the entity classes and mapped superclasses of the entity hierarchy that do not explicitly
specify an access type. An access type is explicitly specified by means of the Access annotation(®), as
described in section 2.3.2.

When annotations are used to define a default access type, the placement of the mapping annotations on
either the persistent fields or persistent properties of the entity class specifies the access type as being
either field- or property-based access respectively.

¢ When field-based access is used, the object/relational mapping annotations for the entity class
annotate the instance variables, and the persistence provider runtime accesses instance vari-
ables directly. All non-transient instance variables that are not annotated with the Tran-
sient annotation are persistent.

e When property-based access is used, the object/relational mapping annotations for the entity
class annotate the getter property accessorst’), and the persistence provider runtime accesses

[6] The use of XML as an alternative and the interaction between Java language annotations and XML elements in defining default
and explicit access types is described in Chapter 12.

71717 28 JSR-338 Maintenance Release

Oracle

Access Type

2.3.2

Java Persistence 2.2, Maintenance Release Entities

persistent state via the property accessor methods. All properties not annotated with the
Transient annotation are persistent.

e Mapping annotations must not be applied to fields or properties that are transient or
Transient.

All such classes in the entity hierarchy whose access type is defaulted in this way must be consistent in
their placement of annotations on either fields or properties, such that a single, consistent default access
type applies within the hierarchy. Any embeddable classes used by such classes will have the same
access type as the default access type of the hierarchy unless the Access annotation is specified as
defined below.

It is an error if a default access type cannot be determined and an access type is not explicitly specified
by means of annotations or the XML descriptor. The behavior of applications that mix the placement of
annotations on fields and properties within an entity hierarchy without explicitly specifying the
Access annotation is undefined.

Explicit Access Type

An access type for an individual entity class, mapped superclass, or embeddable class can be specified
for that class independent of the default for the entity hierarchy by means of the Access annotation
applied to the class. This explicit access type specification does not affect the access type of other entity
classes or mapped superclasses in the entity hierarchy. The following rules apply:

e When Access (FIELD) is applied to an entity class, mapped superclass, or embeddable
class, mapping annotations may be placed on the instance variables of that class, and the per-
sistence provider runtime accesses persistent state via the instance variables defined by the
class. All non-transient instance variables that are not annotated with the Transient anno-
tation are persistent. When Access (FIELD) is applied to such a class, it is possible to
selectively designate individual attributes within the class for property access. To specify a
persistent property for access by the persistence provider runtime, that property must be desig-
nated Access (PROPERTY) .18 The behavior is undefined if mapping annotations are placed
on any properties defined by the class for which Access (PROPERTY) is not specified. Per-
sistent state inherited from superclasses is accessed in accordance with the access types of
those superclasses.

e When Access (PROPERTY) is applied to an entity class, mapped superclass, or embeddable
class, mapping annotations may be placed on the properties of that class, and the persistence
provider runtime accesses persistent state via the properties defined by that class. All proper-
ties that are not annotated with the Transient annotation are persistent. When
Access (PROPERTY) is applied to such a class, it is possible to selectively designate indi-
vidual attributes within the class for instance variable access. To specify a persistent instance
variable for access by the persistence provider runtime, that instance variable must be desig-
nated Access (FIELD). The behavior is undefined if mapping annotations are placed on any

(8]

These annotations must not be applied to the setter methods.

It is permitted (but redundant) to place Access(FIELD) on a persistent field whose class has field access type or Access(PROP-
ERTY) on a persistent property whose class has property access type. It is not permitted to specify a field as Access(PROPERTY)
or a property as Access(FIELD). Note that Access(PROPERTY) must not be placed on the setter methods.

JSR-338 Maintenance Release 29 7/17/17

Oracle

Entities

233

Java Persistence 2.2, Maintenance Release Primary Keys and Entity Identity

instance variables defined by the class for which Access (FIELD) is not specified. Persis-
tent state inherited from superclasses is accessed in accordance with the access types of those
superclasses.

Note that when access types are combined within a class, the Transient annotation should
be used to avoid duplicate persistent mappings.

Access Type of an Embeddable Class

2.34

The access type of an embeddable class is determined by the access type of the entity class, mapped
superclass, or embeddable class in which it is embedded (including as a member of an element collec-
tion) independent of whether the access type of the containing class has been explicitly specified or
defaulted. A different access type for an embeddable class can be specified for that embeddable class
by means of the Access annotation as described above.

Defaulted Access Types of Embeddable Classes and Mapped Superclasses

2.4

Care must be exercised when defining an embeddable class or mapped superclass which is used both in
a context of field access and in a context of property access and whose access type is not explicitly spec-
ified by means of the Access annotation or XML mapping file.

Such classes should be defined so that the number, names, and types of the resulting persistent attributes
are identical, independent of the access type in use. The behavior of such classes whose attributes are
not independent of access type is otherwise undefined with regard to use with the metamodel API if
they occur in contexts of differing access types within the same persistence unit.

Primary Keys and Entity Identity

Every entity must have a primary key.

The primary key must be defined on the entity class that is the root of the entity hierarchy or on a
mapped superclass that is a (direct or indirect) superclass of all entity classes in the entity hierarchy. The
primary key must be defined exactly once in an entity hierarchy.

A primary key corresponds to one or more fields or properties (“attributes”) of the entity class.

e A simple (i.e., non-composite) primary key must correspond to a single persistent field or
property of the entity class. The Id annotation or id XML element must be used to denote a
simple primary key. See Section 11.1.21.

¢ A composite primary key must correspond to either a single persistent field or property or to a
set of such fields or properties as described below. A primary key class must be defined to rep-
resent a composite primary key. Composite primary keys typically arise when mapping from
legacy databases when the database key is comprised of several columns. The EmbeddedId
or IdClass annotation is used to denote a composite primary key. See Sections 11.1.17 and
11.1.22.

7/17/17

30 JSR-338 Maintenance Release

Oracle

Primary Keys and Entity Identity Java Persistence 2.2, Maintenance Release Entities

A simple primary key or a field or property of a composite primary key should be one of the following
types: any Java primitive type; any primitive wrapper type; java.lang.String;
jJava.util.Date; java.sqgl.Date; java.math.BigDecimal; java.math.BigInte-
ger.[g] If the primary key is a composite primary key derived from the primary key of another entity,
the primary key may contain an attribute whose type is that of the primary key of the referenced entity
as described in Section 2.4.1. Entities whose primary keys use types other than these will not be porta-
ble. If generated primary keys are used, only integral types will be portable. If java.util.Date is
used as a primary key field or property, the temporal type should be specified as DATE.

The following rules apply for composite primary keys:
¢ The primary key class must be public and must have a public no-arg constructor.

e The access type (field- or property-based access) of a primary key class is determined by the
access type of the entity for which it is the primary key unless the primary key is a embedded
id and a different access type is specified. See Section 2.3, “Access Type”.

e If property-based access is used, the properties of the primary key class must be public or pro-
tected.

e The primary key class must be serializable.

e The primary key class must define equals and hashCode methods. The semantics of value
equality for these methods must be consistent with the database equality for the database types
to which the key is mapped.

e A composite primary key must either be represented and mapped as an embeddable class (see
Section 11.1.17, “Embeddedld Annotation”) or must be represented as an id class and mapped
to multiple fields or properties of the entity class (see Section 11.1.22, “IdClass Annotation”).

e If the composite primary key class is represented as an id class, the names of primary key
fields or properties in the primary key class and those of the entity class to which the id class is
mapped must correspond and their types must be the same.

e A primary key that corresponds to a derived identity must conform to the rules of Section
2.4.1.

The value of its primary key uniquely identifies an entity instance within a persistence context and to
EntityManager operations as described in Chapter 3, “Entity Operations”. The application must not
change the value of the primary key[lo]. The behavior is undefined if this occurs.!'!

(9]

In general, however, approximate numeric types (e.g., floating point types) should never be used in primary keys.

[10] This includes not changing the value of a mutable type that is primary key or an attribute of a composite primary key.

[11] The implementation may, but is not required to, throw an exception. Portable applications must not rely on any such specific

behavior.

JSR-338 Maintenance Release 31 7/17/17

Oracle

Entities

24.1

Java Persistence 2.2, Maintenance Release Primary Keys and Entity Identity

Primary Keys Corresponding to Derived Identities

24.1.1

The identity of an entity may be derived from the identity of another entity (the “parent” entity) when
the former entity (the “dependent” entity) is the owner of a many-to-one or one-to-one relationship to
the parent entity and a foreign key maps the relationship from dependent to parent.

If a many-to-one or one-to-one entity relationship corresponds to a primary key attribute, the entity con-
taining this relationship cannot be persisted without the relationship having been assigned an entity
since the identity of the entity containing the relationship is derived from the referenced entity.[lz]

Derived identities may be captured by means of simple primary keys or by means of composite primary
keys as described in subsection 2.4.1.1 below.

If the dependent entity class has primary key attributes in addition to those corresponding to the parent's
primary key or if the parent has a composite primary key, an embedded id or id class must be used to
specify the primary key of the dependent entity. It is not necessary that parent entity and dependent
entity both use embedded ids or both use id classes to represent composite primary keys when the par-
ent has a composite key.

A dependent entity may have more than one parent entity.

Specification of Derived Identities
If the dependent entity uses an id class to represent its primary key, one of the two following rules must
be observed:

e The names of the attributes of the id class and the Id attributes of the dependent entity class
must correspond as follows:

e The Id attribute in the entity class and the corresponding attribute in the id class must
have the same name.

e Ifan Id attribute in the entity class is of basic type, the corresponding attribute in the
id class must have the same type.

e Ifan Id attribute in the entity is a many-to-one or one-to-one relationship to a parent
entity, the corresponding attribute in the id class must be of the same Java type as the
id class or embedded id of the parent entity (if the parent entity has a composite pri-
mary key) or the type of the Id attribute of the parent entity (if the parent entity has a
simple primary key).

¢ Ifthe dependent entity has a single primary key attribute (i.e., the relationship attribute), the id
class specified by the dependent entity must be the same as the primary key class of the parent
entity. The Id annotation is applied to the relationship to the parent entity.[l3]

[12] If the application does not set the primary key attribute corresponding to the relationship, the value of that attribute may not be

available until after the entity has been flushed to the database.

[13] Note that it is correct to observe the first rule as an alternative in this case.

7/17/17

32 JSR-338 Maintenance Release

Oracle

Primary Keys and Entity Identity Java Persistence 2.2, Maintenance Release Entities

2.4.1.2

24.1.3

If the dependent entity uses an embedded id to represent its primary key, the attribute in the embedded
id corresponding to the relationship attribute must be of the same type as the primary key of the parent
entity and must be designated by the MapsId annotation applied to the relationship attribute. The
value element of the MapsId annotation must be used to specify the name of the attribute within the
embedded id to which the relationship attribute corresponds. If the embedded id of the dependent entity
is of the same Java type as the primary key of the parent entity, the relationship attribute maps both the
relationship to the parent and the primary key of the dependent entity, and in this case the MapsId
annotation is specified without the value element.['4]

If the dependent entity has a single primary key attribute (i.e, the relationship attribute or an attribute
that corresponds to the relationship attribute) and the primary key of the parent entity is a simple pri-
mary key, the primary key of the dependent entity is a simple primary key of the same type as that of the
parent entity (and neither EmbeddedId nor IdClass is specified). In this case, either (1) the rela-
tionship attribute is annotated Id, or (2) a separate Id attribute is specified and the relationship attribute
is annotated MapsId (and the value element of the MapsId annotation is not specified).

Mapping of Derived Identities

A primary key attribute that is derived from the identity of a parent entity is mapped by the correspond-
ing relationship attribute. The default mapping for this relationship is as specified in section 2.10. In
the case where a default mapping does not apply or where a default mapping is to be overridden, the
JoinColumn or JoinColumns annotation is used on the relationship attribute.

If the dependent entity uses an embedded id to represent its primary key, the AttributeOverride
annotation may be used to override the default mapping of embedded id attributes that do not corre-
spond to the relationship attributes mapping the derived identity. The embedded id attributes that cor-
respond to the relationship are treated by the provider as “read only”—that is, any updates to them on
the part of the application are not propagated to the database.

If the dependent uses an id class, the Column annotation may be used to override the default mapping
of Id attributes that are not relationship attributes.

Examples of Derived Identities
Example 1:
The parent entity has a simple primary key:

@Entity

public class Employee {
@Id long empId;
String empName;

[14] Note that the parent’s primary key might be represented as either an embedded id or as an id class.

JSR-338 Maintenance Release 33 7/17/17

Oracle

Entities Java Persistence 2.2, Maintenance Release Primary Keys and Entity Identity

Case (a): The dependent entity uses IdClass to represent a composite key:

public class DependentId {

String name; // matches name of @Id attribute

long emp; // matches name of Q@Id attribute and type of Employee PK
}

@Entity

@IdClass (DependentId.class)

public class Dependent {
@Id String name;

// id attribute mapped by join column default
@Id @ManyToOne Employee emp;

}
Sample query:

SELECT d
FROM Dependent d
WHERE d.name = 'Joe' AND d.emp.empName = 'Sam'

Case(b): The dependent entity uses EmbeddedId to represent a composite key:

@Embeddable
public class DependentId {

String name;

long empPK; // corresponds to PK type of Employee
}

@Entity
public class Dependent {
@EmbeddedId DependentId id;

// id attribute mapped by join column default
@MapsId ("empPK") // maps empPK attribute of embedded id
@ManyToOne Employee emp;

}

Sample query:

SELECT d
FROM Dependent d
WHERE d.id.name = 'Joe' AND d.emp.empName = 'Sam'

71717 34 JSR-338 Maintenance Release

Oracle

Primary Keys and Entity Identity Java Persistence 2.2, Maintenance Release Entities

Example 2:
The parent entity uses IdClass:

public class EmployeeId {
String firstName;
String lastName;

}

@Entity

@IdClass (EmployeeId.class)

public class Employee {
@Id String firstName
@Id String lastName

}

Case (a): The dependent entity uses IdClass:

public class DependentId {

String name; // matches name of attribute

EmployeelId emp; //matches name of attribute and type of Employee PK
}

@Entity

@IdClass (DependentId.class)

public class Dependent {
@Id String name;

@Id

@JoinColumns ({
@JoinColumn (name="FK1", referencedColumnName="firstName"),
@JoinColumn (name="FK2", referencedColumnName="lastName")

})
@ManyToOne Employee emp;

}
Sample query:

SELECT d
FROM Dependent d
WHERE d.name = 'Joe' AND d.emp.firstName = 'Sam'

Case (b): The dependent entity uses EmbeddedId. The type of the empPK attribute is the same as that
of the primary key of Employee. The EmployeeId class needs to be annotated Embeddable or
denoted as an embeddable class in the XML descriptor.

@Embeddable

public class DependentId {
String name;
EmployeeId empPK;

}

JSR-338 Maintenance Release 35 7/17/17

Oracle

Entities

Java Persistence 2.2, Maintenance Release Primary Keys and Entity Identity

@Entity
public class Dependent {
@EmbeddedId DependentId id;

@MapsId ("empPK")
@QJoinColumns ({

@JoinColumn (name="FK1", referencedColumnName="firstName"),
@JoinColumn (name="FK2", referencedColumnName="lastName")

})
@ManyToOne Employee emp;

}
Sample query:

SELECT d
FROM Dependent d
WHERE d.id.name = 'Joe' AND d.emp.firstName = 'Sam'

Note that the following alternative query will yield the same result:

SELECT d
FROM Dependent d
WHERE d.id.name = 'Joe' AND d.id.empPK.firstName = 'Sam'

Example 3:
The parent entity uses EmbeddedId:

@Embeddable

public class EmployeeId {
String firstName;
String lastName;

}

@Entity
public class Employee {
@EmbeddedId Employeeld empld;

}

Case (a): The dependent entity uses IdClass:

public class DependentId {
String name; // matches name of QId attribute
EmployeeId emp; // matches name of @Id attribute and type
ded id of Employee

of embed-

7/17/17

36 JSR-338 Maintenance Release

Oracle

Primary Keys and Entity Identity Java Persistence 2.2, Maintenance Release Entities

@Entity

@IdClass (DependentId.class)

public class Dependent
@Id
@Column (name="dep name") // default column name is overridden
String name;

@Id
@JoinColumns ({
@JoinColumn (name="FK1", referencedColumnName="firstName"),
@JoinColumn (name="FK2", referencedColumnName="lastName")
})
@ManyToOne Employee emp;
}

Sample query:

SELECT d
FROM Dependent d
WHERE d.name = 'Joe' and d.emp.empld.firstName = 'Sam'

Case (b): The dependent entity uses EmbeddedId:

@Embeddable
public class DependentId {
String name;
EmployeeId empPK; // corresponds to PK type of Employee

}

@Entity

public class Dependent {
// default column name for "name" attribute is overridden
@AttributeOverride (name="name", column=@Column (name="dep name"))
@EmbeddedId DependentId id;

@MapsId ("empPK")
@JoinColumns ({
@JoinColumn (name="FK1", referencedColumnName="firstName"),
@JoinColumn (name="FK2", referencedColumnName="lastName")
})
@ManyToOne Employee emp;
}

Sample query:

SELECT d
FROM Dependent d
WHERE d.id.name = 'Joe' and d.emp.empId.firstName = 'Sam'

Note that the following alternative query will yield the same result:

SELECT d
FROM Dependent d
WHERE d.id.name = 'Joe' AND d.id.empPK.firstName = 'Sam'

JSR-338 Maintenance Release 37 7/17/17

Oracle

Entities

Java Persistence 2.2, Maintenance Release Primary Keys and Entity Identity

Example 4:
The parent entity has a simple primary key:

@Entity
public class Person {
@Id String ssn;

}

Case (a): The dependent entity has a single primary key attribute which is mapped by the relationship
attribute. The primary key of MedicalHistory is of type String

@Entity
public class MedicalHistory {
// default join column name is overridden
@Id
@OneToOne
@JoinColumn (name="FK")
Person patient;

}
Sample query:

SELECT m
FROM MedicalHistory m
WHERE m.patient.ssn = '123-45-6789"'

Case (b): The dependent entity has a single primary key attribute corresponding to the relationship
attribute. The primary key attribute is of the same basic type as the primary key of the parent entity. The
MapsId annotation applied to the relationship attribute indicates that the primary key is mapped by the
relationship attribute. (3]

@Entity
public class MedicalHistory {
@Id String id; // overriding not allowed

// default join column name is overridden
@MapsId

@QJoinColumn (name="FK")
@0OneToOne Person patient;

}
Sample query:

SELECT m
FROM MedicalHistory m WHERE m.patient.ssn = '123-45-6789'

[15]

Note that the use of PrimaryKeyJoinColumn instead of MapsId would result in the same mapping in this example. Use of Mapsld
is preferred for the mapping of derived identities.

7/17/17

38 JSR-338 Maintenance Release

Oracle

Primary Keys and Entity Identity Java Persistence 2.2, Maintenance Release Entities

Example 5:

The parent entity uses TdC1lass. The dependent's primary key class is of same type as that of the par-
ent entity.

public class PersonId ({
String firstName;
String lastName;

}

@Entity

@IdClass (PersonId.class)

public class Person {
@Id String firstName;
@Id String lastName;

}

Case (a): The dependent entity uses ITdClass:

@Entity
@IdClass (PersonId.class)
public class MedicalHistory {
@Id
@JoinColumns ({
@JoinColumn (name="FK1", referencedColumnName="firstName"),
@JoinColumn (name="FK2", referencedColumnName="lastName")
})
@OneToOne
Person patient;

}
Sample query:

SELECT m
FROM MedicalHistory m
WHERE m.patient.firstName = 'Charles'

Case (b): The dependent entity uses the EmbeddedId and MapsId annotations. The PersonId
class needs to be annotated Embeddable or denoted as an embeddable class in the XML descriptor.

@Entity
public class MedicalHistory {
//all attributes map to relationship: AttributeOverride not allowed
@EmbeddedId PersonId id;
@MapsId
@QJoinColumns ({
@JoinColumn (name="FK1", referencedColumnName="firstName"),
@JoinColumn (name="FK2", referencedColumnName="lastName")

})

@0OneToOne Person patient;

JSR-338 Maintenance Release 39 7/17/17

Oracle

Entities Java Persistence 2.2, Maintenance Release Primary Keys and Entity Identity
Sample query:
SELECT m
FROM MedicalHistory m
WHERE m.patient.firstName = 'Charles'

Note that the following alternative query will yield the same result:

SELECT m
FROM MedicalHistory m
WHERE m.id.firstName = 'Charles'

Example 6:

The parent entity uses EmbeddedId. The dependent's primary key is of the same type as that of the
parent.

@Embeddable

public class PersonId ({
String firstName;
String lastName;

}

@Entity
public class Person {
@EmbeddedId PersonId id;

}

Case (a): The dependent class uses ITdClass:

@Entity
@IdClass (PersonId.class)
public class MedicalHistory {
@Id
@OneToOne
@JoinColumns ({
@JoinColumn (name="FK1", referencedColumnName="firstName"),
@JoinColumn (name="FK2", referencedColumnName="lastName")
})

Person patient;

71717 40 JSR-338 Maintenance Release

Oracle

Embeddable Classes Java Persistence 2.2, Maintenance Release Entities

Case (b): The dependent class uses EmbeddedId:

@Entity
public class MedicalHistory {
// All attributes are mapped by the relationship:
// AttributeOverride is not allowed
@EmbeddedId PersonId id;
@MapsId
@JoinColumns ({
@JoinColumn (name="FK1", referencedColumnName="firstName"),
@JoinColumn (name="FK2", referencedColumnName="lastName")
})
@OneToOne
Person patient;

2.5 Embeddable Classes

An entity may use other fine-grained classes to represent entity state. Instances of these classes, unlike
entity instances, do not have persistent identity of their own. Instead, they exist only as part of the state
of the entity to which they belong. An entity may have collections of embeddables as well as single-val-
ued embeddable attributes. Embeddables may also be used as map keys and map values. Embedded
objects belong strictly to their owning entity, and are not sharable across persistent entities. Attempting
to share an embedded object across entities has undefined semantics.

Embeddable classes must adhere to the requirements specified in Section 2.1 for entities with the excep-
tion that embeddable classes are not annotated as Entity. Embeddable classes must be annotated as
Embeddable or denoted in the XML descriptor as such. The access type for an embedded object is
determined as described in Section 2.3, “Access Type”.

An embeddable class may be used to represent the state of another embeddable class.

An embeddable class (including an embeddable class within another embeddable class) may contain a
collection of a basic type or other embeddable class.['®]

An embeddable class may contain a relationship to an entity or collection of entities. Since instances of
embeddable classes themselves have no persistent identity, the relationship from the referenced entity is
to the entity that contains the embeddable instance(s) and not to the embeddable itself. "1 An
embeddable class that is used as an embedded id or as a map key must not contain such a relationship.

Additional requirements and restrictions on embeddable classes are described in Section 2.6.

[16] Direct or indirect circular containment dependencies among embeddable classes are not permitted.
[17] An entity cannot have a unidirectional relationship to the embeddable class of another entity (or itself).

JSR-338 Maintenance Release 41 7/17/17

Oracle

Entities

2.6

Java Persistence 2.2, Maintenance Release Collections of Embeddable Classes and Basic

Collections of Embeddable Classes and Basic Types

2.7

A persistent field or property of an entity or embeddable class may correspond to a collection of a basic
type or embeddable class (“element collection”). Such a collection, when specified as such by the E1e-
mentCollection annotation, is mapped by means of a collection table, as defined in Section 11.1.8.
If the ElementCollection annotation (or XML equivalent) is not specified for the collection-val-
ued field or property, the rules of Section 2.8 apply.

An embeddable class (including an embeddable class within another embeddable class) that is con-
tained within an element collection must not contain an element collection, nor may it contain a rela-
tionship to an entity other than a many-to-one or one-to-one relationship. The embeddable class must be
on the owning side of such a relationship and the relationship must be mapped by a foreign key map-
ping. (See Section 2.9.)

Map Collections

2.71

Collections of elements and entity relationships can be represented as java.util.Map collections.

The map key and the map value independently can each be a basic type, an embeddable class, or an
entity.

The ElementCollection, OneToMany, and ManyToMany annotations are used to specify the
map as an element collection or entity relationship as follows: when the map value is a basic type or
embeddable class, the ElementCollection annotation is used; when the map value is an entity, the
OneToMany or ManyToMany annotation is used.

Bidirectional relationships represented as java.util.Map collections support the use of the Map
datatype on one side of the relationship only.

Map Keys

If the map key type is a basic type, the MapKeyColumn annotation can be used to specify the column
mapping for the map key. If the MapKeyColumn annotation is not specified, the default values of the
MapKeyColumn annotation apply as described in section 11.1.33.

If the map key type is an embeddable class, the mappings for the map key columns are defaulted
according to the default column mappings for the embeddable class. (See Section 11.1.9, “Column
Annotation”). The AttributeOverride and AttributeOverrides annotations can be used to
override these mappings, as described in sections 11.1.4 and 11.1.5. If an embeddable class is used as a
map key, the embeddable class must implement the hashCode and equals methods consistently
with the database columns to which the embeddable is mapped[lg].

[18]

Note that when an embeddable instance is used as a map key, these attributes represent its identity. Changes to embeddable
instances used as map keys have undefined behaviour and should be avoided.

7/17/17

42 JSR-338 Maintenance Release

Oracle

Mapping Defaults for Non-Relationship Fields or PropertiesJava Persistence 2.2, Maintenance Release Entities

2.7.2

If the map key type is an entity, the MapKeyJoinColumn and MapKeyJoinColumns annotations
are used to specify the column mappings for the map key. If the primary key of the referenced entity is
a simple primary key and the MapKeyJoinColumn annotation is not specified, the default values of
the MapKeyJoinColumn annotation apply as described in section 11.1.35.

If Java generic types are not used in the declaration of a relationship attribute of type
java.util.Map, the MapKeyClass annotation must be used to specify the type of the key of the
map.

The MapKey annotation is used to specify the special case where the map key is itself the primary key

or a persistent field or property of the entity that is the value of the map. The MapKeyClass annota-
tion is not used when MapKey is specified.

Map Values

2.8

When the value type of the map is a basic type or an embeddable class, a collection table is used to map
the map. If Java generic types are not used, the targetClass element of the ElementCollec-
tion annotation must be used to specify the value type for the map. The default column mappings for
the map value are derived according to the default mapping rules for the CollectionTable annota-
tion defined in section 11.1.8. The Column annotation is used to override these defaults for a map value
of basic type. The AttributeOverride(s) and AssociationOverride(s) annotations are
used to override the mappings for a map value that is an embeddable class.

When the value type of the map is an entity, a join table is used to map the map for a many-to-many
relationship or, by default, for a one-to-many unidirectional relationship. If the relationship is a bidirec-
tional one-to-many/many-to-one relationship, by default the map is mapped in the table of the entity
that is the value of the map. If Java generic types are not used, the targetEntity element of the
OneToMany or ManyToMany annotation must be used to specify the value type for the map. Default
mappings are described in Section 2.10.

Mapping Defaults for Non-Relationship Fields or Properties

If a persistent field or property other than a relationship property is not annotated with one of the map-
ping annotations defined in Chapter 11 (or equivalent mapping information is not specified in the XML
descriptor), the following default mapping rules are applied in order:

e If the type is a class that is annotated with the Embeddable annotation, it is mapped in the
same way as if the field or property were annotated with the Embedded annotation. See Sec-
tions 11.1.15 and 11.1.16.

e If the type of the field or property is one of the following, it is mapped in the same way as it
would if it were annotated as Basic: Java primitive types, wrappers of the primitive types,

java.lang.String, java.math.BigInteger, java.math.BigDecimal,
java.util.Date, java.util.Calendar, java.sql.Date, java.sql.Time,
java.sqgl.Timestamp, java.time.LocalDate, java.time.LocalTime,

java.time.LocalDateTime, java.time.OffsetTime, java.time.Offset-

JSR-338 Maintenance Release 43 7/17/17

Oracle

Entities

2.9

Java Persistence 2.2, Maintenance Release Entity Relationships

DateTime, byte[], Byte[], char[], Character([], enums, any other type that
implements Serializable. See Sections 11.1.6, 11.1.18, 11.1.28, and 11.1.53.

It is an error if no annotation is present and none of the above rules apply.

Entity Relationships

Relationships among entities may be one-to-one, one-to-many, many-to-one, or many-to-many. Rela-
tionships are polymorphic.

If there is an association between two entities, one of the following relationship modeling annotations
must be applied to the corresponding persistent property or field of the referencing entity: OneToOne,
OneToMany, ManyToOne, ManyToMany. For associations that do not specify the target type (e.g.,
where Java generic types are not used for collections), it is necessary to specify the entity that is the tar-
get of the relationship.[lg] Equivalent XML elements may be used as an alternative to these mapping
annotations.

These annotations mirror common practice in relational database schema modeling. The use of the
relationship modeling annotations allows the object/relationship mapping of associations to the rela-
tional database schema to be fully defaulted, to provide an ease-of-development facility. This is
described in Section 2.10, “Relationship Mapping Defaults”.

Relationships may be bidirectional or unidirectional. A bidirectional relationship has both an owning
side and an inverse (non-owning) side. A unidirectional relationship has only an owning side. The own-
ing side of a relationship determines the updates to the relationship in the database, as described in sec-
tion 3.2.4.

The following rules apply to bidirectional relationships:
e The inverse side of a bidirectional relationship must refer to its owning side by use of the
mappedBy element of the OneToOne, OneToMany, or ManyToMany annotation. The
mappedBy element designates the property or field in the entity that is the owner of the rela-

tionship.

¢ The many side of one-to-many / many-to-one bidirectional relationships must be the owning
side, hence the mappedBy element cannot be specified on the ManyToOne annotation.

¢ For one-to-one bidirectional relationships, the owning side corresponds to the side that con-
tains the corresponding foreign key.

¢ For many-to-many bidirectional relationships either side may be the owning side.

[19] For associations of type java.util.Map, target type refers to the type that is the Map value.

7/17/17

44 JSR-338 Maintenance Release

Oracle

Entity Relationships Java Persistence 2.2, Maintenance Release Entities

The relationship modeling annotation constrains the use of the cascade=REMOVE specification. The
cascade=REMOVE specification should only be applied to associations that are specified as One-
ToOne or OneToMany. Applications that apply cascade=REMOVE to other associations are not por-
table.

Associations that are specified as OneToOne or OneToMany support use of the orphanRemoval
option. The following behaviors apply when orphanRemoval is in effect:

e [If an entity that is the target of the relationship is removed from the relationship (by setting the
relationship to null or removing the entity from the relationship collection), the remove opera-
tion will be applied to the entity being orphaned. The remove operation is applied at the time of
the flush operation. The orphanRemoval functionality is intended for entities that are pri-
vately “owned” by their parent entity. Portable applications must otherwise not depend upon a
specific order of removal, and must not reassign an entity that has been orphaned to another
relationship or otherwise attempt to persist it. If the entity being orphaned is a detached, new,
or removed entity, the semantics of orphanRemoval do not apply.

e If the remove operation is applied to a managed source entity, the remove operation will be
cascaded to the relationship target in accordance with the rules of section 3.2.3, (and hence it is
not necessary to specify cascade=REMOVE for the relationship)[zo].

Section 2.10, “Relationship Mapping Defaults”, defines relationship mapping defaults for entity rela-
tionships. Additional mapping annotations (e.g., column and table mapping annotations) may be speci-
fied to override or further refine the default mappings and mapping strategies described in Section 2.10.

In addition, this specification also requires support for the following alternative mapping strategies:

¢ The mapping of unidirectional one-to-many relationships by means of foreign key mappings.
The JoinColumn annotation or corresponding XML element must be used to specify such
non-default mappings. See section 11.1.25.

e The mapping of unidirectional and bidirectional one-to-one relationships, bidirectional
many-to-one/one-to-many relationships, and unidirectional many-to-one relationships by
means of join table mappings. The JoinTable annotation or corresponding XML element
must be used to specify such non-default mappings. See section 11.1.27.

Such mapping annotations must be specified on the owning side of the relationship. Any overriding of
mapping defaults must be consistent with the relationship modeling annotation that is specified. For
example, if a many-to-one relationship mapping is specified, it is not permitted to specify a unique key
constraint on the foreign key for the relationship.

The persistence provider handles the object/relational mapping of the relationships, including their
loading and storing to the database as specified in the metadata of the entity class, and the referential
integrity of the relationships as specified in the database (e.g., by foreign key constraints).

[20]

If the parent is detached or new or was previously removed before the orphan was associated with it, the remove operation is not
applied to the entity being orphaned.

JSR-338 Maintenance Release 45 7/17/17

Oracle

Entities

2.10

Java Persistence 2.2, Maintenance Release Relationship Mapping Defaults

Note that it is the application that bears responsibility for maintaining the consistency of run-
time relationships—for example, for insuring that the “one” and the “many” sides of a bidi-
rectional relationship are consistent with one another when the application updates the
relationship at runtime.

If there are no associated entities for a multi-valued relationship of an entity fetched from the database,
the persistence provider is responsible for returning an empty collection as the value of the relationship.

Relationship Mapping Defaults

2.10.1

This section defines the mapping defaults that apply to the use of the OneToOne, OneToMany,
ManyToOne, and ManyToMany relationship modeling annotations. The same mapping defaults apply
when the XML descriptor is used to denote the relationship cardinalities.

Bidirectional OneToOne Relationships

Assuming that:

Entity A references a single instance of Entity B.
Entity B references a single instance of Entity A.

Entity A is specified as the owner of the relationship.
The following mapping defaults apply:

Entity A is mapped to a table named A.
Entity B is mapped to a table named B.

Table A contains a foreign key to table B. The foreign key column name is formed as the con-
catenation of the following: the name of the relationship property or field of entity A; " "; the
name of the primary key column in table B. The foreign key column has the same type as the
primary key of table B and there is a unique key constraint on it.

Example:

@Entity
public class Employee {
private Cubicle assignedCubicle;

@0OneToOne

public Cubicle getAssignedCubicle () {
return assignedCubicle;

}

public void setAssignedCubicle (Cubicle cubicle) {
this.assignedCubicle = cubicle;

}

7/17/17

46 JSR-338 Maintenance Release

Oracle

Relationship Mapping Defaults Java Persistence 2.2, Maintenance Release Entities

@Entity
public class Cubicle {
private Employee residentEmployee;

@OneToOne (mappedBy="assignedCubicle")

public Employee getResidentEmployee () {
return residentEmployee;

}

public void setResidentEmployee (Employee employee) {
this.residentEmployee = employee;
}

}

In this example:

Entity Employee references a single instance of Entity Cubicle.
Entity Cubicle references a single instance of Entity Employee.
Entity Employee is the owner of the relationship.

The following mapping defaults apply:

Entity Employee is mapped to a table named EMPLOYEE.
Entity Cubicle is mapped to a table named CUBICLE.

Table EMPLOYEE contains a foreign key to table CUBICLE. The foreign key column is named
ASSIGNEDCUBICLE <PK of CUBICLE>, where <PK of CUBICLE> denotes the name of
the primary key column of table CUBICLE. The foreign key column has the same type as the
primary key of CUBICLE, and there is a unique key constraint on it.

2.10.2 Bidirectional ManyToOne / OneToMany Relationships
Assuming that:

Entity A references a single instance of Entity B.
Entity B references a collection of Entity Al

Entity A must be the owner of the relationship.
The following mapping defaults apply:

Entity A is mapped to a table named A.
Entity B is mapped to a table named B.

Table A contains a foreign key to table B. The foreign key column name is formed as the con-
catenation of the following: the name of the relationship property or field of entity A; " "; the

[21] When the relationship is modeled as a java.util.Map, “Entity B references a collection of Entity A” means that Entity B ref-
erences a map collection in which the type of the Map value is Entity A. The map key may be a basic type, embeddable class, or
an entity.

JSR-338 Maintenance Release 47 7/17/17

Oracle

Entities

Java Persistence 2.2, Maintenance Release Relationship Mapping Defaults

name of the primary key column in table B. The foreign key column has the same type as the
primary key of table B.

Example:

@Entity
public class Employee {

private Department department;

@ManyToOne

public Department getDepartment () {
return department;

}

public void setDepartment (Department department) {
this.department = department;

}

@Entity
public class Department {

private Collection<Employee> employees = new HashSet ();

@0OneToMany (mappedBy="department")

public Collection<Employee> getEmployees () {
return employees;

}

public void setEmployees (Collection<Employee> employees) {
this.employees = employees;

}

In this example:

Entity Employee references a single instance of Entity Department.
Entity Department references a collection of Entity Employee.
Entity Employee is the owner of the relationship.

The following mapping defaults apply:

Entity Employee is mapped to a table named EMPLOYEE.
Entity Department is mapped to a table named DEPARTMENT.
Table EMPLOYEE contains a foreign key to table DEPARTMENT. The foreign key column is

named DEPARTMENT <PK of DEPARTMENT>, where <PK of DEPARTMENT> denotes

the name of the primary key column of table DEPARTMENT. The foreign key column has the
same type as the primary key of DEPARTMENT.

7/17/17

48 JSR-338 Maintenance Release

Oracle

Relationship Mapping Defaults Java Persistence 2.2, Maintenance Release Entities

2.10.3 Unidirectional Single-Valued Relationships

Assuming that:

Entity A references a single instance of Entity B.
Entity B does not reference Entity A.

A unidirectional relationship has only an owning side, which in this case must be Entity A.

The unidirectional single-valued relationship modeling case can be specified as either a unidirectional
OneToOne or as a unidirectional ManyToOne relationship.

2.10.3.1 Unidirectional OneToOne Relationships
The following mapping defaults apply:

Entity A is mapped to a table named A.
Entity B is mapped to a table named B.
Table A contains a foreign key to table B. The foreign key column name is formed as the con-
catenation of the following: the name of the relationship property or field of entity A; " "; the

name of the primary key column in table B. The foreign key column has the same type as the
primary key of table B and there is a unique key constraint on it.

Example:

@Entity
public class Employee {
private TravelProfile profile;

@0OneToOne

public TravelProfile getProfile() {
return profile;

}

public void setProfile(TravelProfile profile) {
this.profile = profile;

}

@Entity
public class TravelProfile {

}
In this example:
Entity Employee references a single instance of Entity TravelProfile.

Entity TravelProfile does not reference Entity Employee.
Entity Employee is the owner of the relationship.

JSR-338 Maintenance Release 49 7/17/17

Oracle

Entities Java Persistence 2.2, Maintenance Release Relationship Mapping Defaults

The following mapping defaults apply:

Entity Employee is mapped to a table named EMPLOYEE.
Entity TravelProfile is mapped to a table named TRAVELPROFILE.

Table EMPLOYEE contains a foreign key to table TRAVELPROFILE. The foreign key column
is named PROFILE <PK of TRAVELPROFILE>, where <PK of TRAVELPROFILE>
denotes the name of the primary key column of table TRAVELPROFILE. The foreign key col-
umn has the same type as the primary key of TRAVELPROFILE, and there is a unique key
constraint on it.

2.10.3.2 Unidirectional ManyToOne Relationships
The following mapping defaults apply:

Entity A is mapped to a table named A.
Entity B is mapped to a table named B.

Table A contains a foreign key to table B. The foreign key column name is formed as the con-
catenation of the following: the name of the relationship property or field of entity A; " "; the
name of the primary key column in table B. The foreign key column has the same type as the
primary key of table B.

Example:

@Entity
public class Employee {
private Address address;

@ManyToOne
public Address getAddress () {
return address;

}
public void setAddress (Address address) {
this.address = address;
}
}

@Entity
public class Address {

}

In this example:

Entity Employee references a single instance of Entity Address.
Entity Address does not reference Entity Employee.

Entity Employee is the owner of the relationship.

71717 50 JSR-338 Maintenance Release

Oracle

Relationship Mapping Defaults Java Persistence 2.2, Maintenance Release Entities

The following mapping defaults apply:

Entity Employee is mapped to a table named EMPLOYEE.
Entity Address is mapped to a table named ADDRESS.

Table EMPLOYEE contains a foreign key to table ADDRESS. The foreign key column is named
ADDRESS <PK of ADDRESS>, where <PK of ADDRESS> denotes the name of the primary
key column of table ADDRESS. The foreign key column has the same type as the primary key
of ADDRESS.

2.10.4 Bidirectional ManyToMany Relationships
Assuming that:

Entity A references a collection of Entity B.
Entity B references a collection of Entity A.
Entity A is the owner of the relationship.

The following mapping defaults apply:

Entity A is mapped to a table named A.
Entity B is mapped to a table named B.

There is a join table that is named A B (owner name first). This join table has two foreign key
columns. One foreign key column refers to table A and has the same type as the primary key of
table A. The name of this foreign key column is formed as the concatenation of the following:
the name of the relationship property or field of entity B; " "; the name of the primary key col-
umn in table A. The other foreign key column refers to table B and has the same type as the pri-
mary key of table B. The name of this foreign key column is formed as the concatenation of the
following: the name of the relationship property or field of entity A; " "; the name of the pri-
mary key column in table B.

Example:

@Entity
public class Project {
private Collection<Employee> employees;

@ManyToMany
public Collection<Employee> getEmployees () {
return employees;

}

public void setEmployees (Collection<Employee> employees) {
this.employees = employees;

}

JSR-338 Maintenance Release 51 7/17/17

Oracle

Entities Java Persistence 2.2, Maintenance Release Relationship Mapping Defaults

@Entity
public class Employee {
private Collection<Project> projects;

@ManyToMany (mappedBy="employees")

public Collection<Project> getProjects () {
return projects;

}

public void setProjects(Collection<Project> projects) {
this.projects = projects;

}

In this example:

Entity Project references a collection of Entity Employee.
Entity Employee references a collection of Entity Project.
Entity Project is the owner of the relationship.

The following mapping defaults apply:

Entity Project is mapped to a table named PROJECT.
Entity Employee is mapped to a table named EMPLOYEE.

There is a join table that is named PROJECT EMPLOYEE (owner name first). This join table
has two foreign key columns. One foreign key column refers to table PROJECT and has the
same type as the primary key of PROJECT. The name of this foreign key column is
PROJECTS_ <PK of PROJECT>, where <PK of PROJECT> denotes the name of the primary
key column of table PROJECT. The other foreign key column refers to table EMPLOYEE and
has the same type as the primary key of EMPLOYEE. The name of this foreign key column is
EMPLOYEES <PK of EMPLOYEE>, where <PK of EMPLOYEE> denotes the name of the
primary key column of table EMPLOYEE.

2.10.5 Unidirectional Multi-Valued Relationships

Assuming that:

Entity A references a collection of Entity B.
Entity B does not reference Entity A.

A unidirectional relationship has only an owning side, which in this case must be Entity A.

The unidirectional multi-valued relationship modeling case can be specified as either a unidirectional
OneToMany or as a unidirectional ManyToMany relationship.

71717 52 JSR-338 Maintenance Release

Oracle

Relationship Mapping Defaults Java Persistence 2.2, Maintenance Release Entities

2.10.5.1 Unidirectional OneToMany Relationships
The following mapping defaults apply:

Entity A is mapped to a table named A.

Entity B is mapped to a table named B.

There is a join table that is named A B (owner name first). This join table has two foreign key
columns. One foreign key column refers to table A and has the same type as the primary key of
table A. The name of this foreign key column is formed as the concatenation of the following:
the name of entity A; " "; the name of the primary key column in table A. The other foreign
key column refers to table B and has the same type as the primary key of table B and there is a
unique key constraint on it. The name of this foreign key column is formed as the concatena-
tion of the following: the name of the relationship property or field of entity A; " "; the name
of the primary key column in table B.

Example:

@Entity
public class Employee {
private Collection<AnnualReview> annualReviews;

@OneToMany
public Collection<AnnualReview> getAnnualReviews () {
return annualReviews;

}

public void setAnnualReviews (Collection<AnnualReview> annualRe-
views) {
this.annualReviews = annualReviews;

}

@Entity
public class AnnualReview ({

}

In this example:

Entity Employee references a collection of Entity AnnualReview.
Entity AnnualReview does not reference Entity Employee.
Entity Employee is the owner of the relationship.

The following mapping defaults apply:

Entity Employee is mapped to a table named EMPLOYEE.
Entity AnnualReview is mapped to a table named ANNUALREVIEW.

There is a join table that is named EMPLOYEE ANNUALREVIEW (owner name first). This
join table has two foreign key columns. One foreign key column refers to table EMPLOYEE

JSR-338 Maintenance Release 53 7/17/17

Oracle

Entities

Java Persistence 2.2, Maintenance Release Relationship Mapping Defaults

and has the same type as the primary key of EMPLOYEE. This foreign key column is named
EMPLOYEE <PK of EMPLOYEE>, where <PK of EMPLOYEE> denotes the name of the
primary key column of table EMPLOYEE. The other foreign key column refers to table ANNU-
ALREVIEW and has the same type as the primary key of ANNUALREVIEW. This foreign key
column is named ANNUALREVIEWS <PK of ANNUALREVIEW>, where <PK of ANNU-
ALREVIEW> denotes the name of the primary key column of table ANNUALREVIEW. There
is a unique key constraint on the foreign key that refers to table ANNUALREVIEW.

2.10.5.2 Unidirectional ManyToMany Relationships

The following mapping defaults apply:

Entity A is mapped to a table named A.
Entity B is mapped to a table named B.

There is a join table that is named A B (owner name first). This join table has two foreign key
columns. One foreign key column refers to table 2 and has the same type as the primary key of
table A. The name of this foreign key column is formed as the concatenation of the following:
the name of entity A; " "; the name of the primary key column in table A. The other foreign
key column refers to table B and has the same type as the primary key of table B. The name of
this foreign key column is formed as the concatenation of the following: the name of the rela-
tionship property or field of entity A; " "; the name of the primary key column in table B.

Example:

@Entity
public class Employee {
private Collection<Patent> patents;

@ManyToMany
public Collection<Patent> getPatents () {

}

return patents;

public void setPatents (Collection<Patent> patents) {

}

this.patents = patents;

@Entity
public class Patent {

}

In this example:

Entity Employee references a collection of Entity Patent.
Entity Patent does not reference Entity Employee.

Entity Employee is the owner of the relationship.

7/17/17

54 JSR-338 Maintenance Release

Oracle

Inheritance Java Persistence 2.2, Maintenance Release Entities

The following mapping defaults apply:

Entity Employee is mapped to a table named EMPLOYEE.
Entity Patent is mapped to a table named PATENT.

There is a join table that is named EMPLOYEE PATENT (owner name first). This join table
has two foreign key columns. One foreign key column refers to table EMPLOYEE and has the
same type as the primary key of EMPLOYEE. This foreign key column is named
EMPLOYEE <PK of EMPLOYEE>, where <PK of EMPLOYEE> denotes the name of the
primary key column of table EMPLOYEE. The other foreign key column refers to table
PATENT and has the same type as the primary key of PATENT. This foreign key column is
named PATENTS <PK of PATENT>, where <PK of PATENT> denotes the name of the pri-
mary key column of table PATENT.

2.11 Inheritance

An entity may inherit from another entity class. Entities support inheritance, polymorphic associations,
and polymorphic queries.

Both abstract and concrete classes can be entities. Both abstract and concrete classes can be annotated
with the Ent ity annotation, mapped as entities, and queried for as entities.

Entities can extend non-entity classes and non-entity classes can extend entity classes.

These concepts are described further in the following sections.

2.11.1 Abstract Entity Classes

An abstract class can be specified as an entity. An abstract entity differs from a concrete entity only in
that it cannot be directly instantiated. An abstract entity is mapped as an entity and can be the target of
queries (which will operate over and/or retrieve instances of its concrete subclasses).

An abstract entity class is annotated with the Ent ity annotation or denoted in the XML descriptor as
an entity.

The following example shows the use of an abstract entity class in the entity inheritance hierarchy.
Example: Abstract class as an Entity

@Entity

QTable (name="EMP")

@Inheritance (strategy=JOINED)

public abstract class Employee {
@Id protected Integer empld;
@Version protected Integer version;
@ManyToOne protected Address address;

JSR-338 Maintenance Release 55 7/17/17

Oracle

Entities

2.11.2

Java Persistence 2.2, Maintenance Release Inheritance

@Entity

@Table (name="FT EMP")

@DiscriminatorValue ("FT")
@PrimaryKeyJoinColumn (name="FT EMPID")

public class FullTimeEmployee extends Employee {

// Inherit empId, but mapped in this class to FT _EMP.FT EMPID
// Inherit version mapped to EMP.VERSION
// Inherit address mapped to EMP.ADDRESS fk

// Defaults to FT EMP.SALARY
protected Integer salary;

@Entity
@Table (name="PT EMP")
@DiscriminatorvValue ("PT")
// PK column is PT EMP.EMPID due to PrimaryKeyJoinColumn default
public class PartTimeEmployee extends Employee {
protected Float hourlyWage;

Mapped Superclasses

An entity may inherit from a superclass that provides persistent entity state and mapping information,
but which is not itself an entity. Typically, the purpose of such a mapped superclass is to define state
and mapping information that is common to multiple entity classes.

A mapped superclass, unlike an entity, is not queryable and must not be passed as an argument to
EntityManager or Query operations. Persistent relationships defined by a mapped superclass must
be unidirectional.

Both abstract and concrete classes may be specified as mapped superclasses. The MappedSuper-
class annotation (or mapped-superclass XML descriptor element) is used to designate a
mapped superclass.

A class designated as a mapped superclass has no separate table defined for it. Its mapping information
is applied to the entities that inherit from it.

A class designated as a mapped superclass can be mapped in the same way as an entity except that the
mappings will apply only to its subclasses since no table exists for the mapped superclass itself. When
applied to the subclasses, the inherited mappings will apply in the context of the subclass tables. Map-
ping information can be overridden in such subclasses by using the AttributeOverride and
AssociationOverride annotations or corresponding XML elements.

All other entity mapping defaults apply equally to a class designated as a mapped superclass.

The following example illustrates the definition of a concrete class as a mapped superclass.

7/17/17

56 JSR-338 Maintenance Release

Oracle

Inheritance

Java Persistence 2.2, Maintenance Release Entities

Example: Concrete class as a mapped superclass

@MappedSuperclass
public class Employee {

}

@Id protected Integer empld;
@Version protected Integer version;
@ManyToOne @JoinColumn (name="ADDR")
protected Address address;

public Integer getEmpId() { ... }

public void setEmpId(Integer id) { ... }
public Address getAddress() { ... }

public void setAddress (Address addr) { ... }

// Default table is FTEMPLOYEE table

@Entity
public class FTEmployee extends Employee {

// Inherited empId field mapped to FTEMPLOYEE.EMPID
// Inherited version field mapped to FTEMPLOYEE.VERSION
// Inherited address field mapped to FTEMPLOYEE.ADDR fk

// Defaults to FTEMPLOYEE.SALARY
protected Integer salary;

public FTEmployee () {}

public Integer getSalary() { ... }

public void setSalary(Integer salary) { ... }
}
@Entity

@Table (name="PT_ EMP")
@AssociationOverride (name="address",

joincolumns=@JoinColumn (name="ADDR ID"))

public class PartTimeEmployee extends Employee {

// Inherited empId field mapped to PT EMP.EMPID

// Inherited version field mapped to PT_ EMP.VERSION

// address field mapping overridden to PT EMP.ADDR ID fk
QColumn (name="WAGE")

protected Float hourlyWage;

public PartTimeEmployee () {}

public Float getHourlyWage() { ... }
public void setHourlyWage (Float wage) { ... }

JSR-338 Maintenance Release

57 71717

Oracle

Entities

Java Persistence 2.2, Maintenance Release Inheritance

2.11.3 Non-Entity Classes in the Entity Inheritance Hierarchy

An entity can have a non-entity superclass, which may be either a concrete or abstract class.[??]

The non-entity superclass serves for inheritance of behavior only. The state of a non-entity superclass is
not persistent. Any state inherited from non-entity superclasses is non-persistent in an inheriting entity
class. This non-persistent state is not managed by the entity manager[23]. Any annotations on such
superclasses are ignored.

Non-entity classes cannot be passed as arguments to methods of the EntityManager or Query
interfaces>*! and cannot bear mapping information.

The following example illustrates the use of a non-entity class as a superclass of an entity.
Example: Non-entity superclass

public class Cart {
protected Integer operationCount; // transient state
public Cart () { operationCount = 0; }
public Integer getOperationCount () { return operationCount; }
public void incrementOperationCount () { operationCount++; }

}

@Entity
public class ShoppingCart extends Cart {
Collection<Item> items = new Vector<Item>();

public ShoppingCart () { super(); }

@OneToMany
public Collection<Item> getItems() { return items; }
public void addItem(Item item) ({

items.add (item) ;
incrementOperationCount () ;

[22] The superclass must not be an embeddable class or id class.
[23] If a transaction-scoped persistence context is used, it is not required to be retained across transactions.
[24] This includes instances of a non-entity class that extends an entity class.

7/17/17

58 JSR-338 Maintenance Release

Oracle

Inheritance Mapping Strategies Java Persistence 2.2, Maintenance Release Entities

2.12

Inheritance Mapping Strategies

2.12.1

The mapping of class hierarchies is specified through metadata.

There are three basic strategies that are used when mapping a class or class hierarchy to a relational
database:

¢ asingle table per class hierarchy

¢ ajoined subclass strategy, in which fields that are specific to a subclass are mapped to a sepa-
rate table than the fields that are common to the parent class, and a join is performed to instan-
tiate the subclass.

¢ atable per concrete entity class

An implementation is required to support the single table per class hierarchy inheritance mapping strat-
egy and the joined subclass strategy.

Support for the table per concrete class inheritance mapping strategy is optional in this
release. Applications that use this mapping strategy will not be portable.

Support for the combination of inheritance strategies within a single entity inheritance hierar-
chy is not required by this specification.

Single Table per Class Hierarchy Strategy

2.12.2

In this strategy, all the classes in a hierarchy are mapped to a single table. The table has a column that
serves as a “discriminator column”, that is, a column whose value identifies the specific subclass to
which the instance that is represented by the row belongs.

This mapping strategy provides good support for polymorphic relationships between entities and for
queries that range over the class hierarchy.

It has the drawback, however, that it requires that the columns that correspond to state specific to the
subclasses be nullable.

Joined Subclass Strategy

In the joined subclass strategy, the root of the class hierarchy is represented by a single table. Each sub-
class is represented by a separate table that contains those fields that are specific to the subclass (not
inherited from its superclass), as well as the column(s) that represent its primary key. The primary key
column(s) of the subclass table serves as a foreign key to the primary key of the superclass table.

This strategy provides support for polymorphic relationships between entities.
It has the drawback that it requires that one or more join operations be performed to instantiate instances

of a subclass. In deep class hierarchies, this may lead to unacceptable performance. Queries that range
over the class hierarchy likewise require joins.

JSR-338 Maintenance Release 59 7/17/17

Oracle

Entities

Java Persistence 2.2, Maintenance Release Naming of Database Objects

2.12.3 Table per Concrete Class Strategy

2.13

In this mapping strategy, each class is mapped to a separate table. All properties of the class, including
inherited properties, are mapped to columns of the table for the class.

This strategy has the following drawbacks:
e It provides poor support for polymorphic relationships.

e [t typically requires that SQL UNION queries (or a separate SQL query per subclass) be issued
for queries that are intended to range over the class hierarchy.

Naming of Database Objects

Many annotations and annotation elements contain names of database objects or assume default names
for database objects.

This specification requires the following with regard to the interpretation of the names referencing data-
base objects. These names include the names of tables, columns, and other database elements. Such
names also include names that result from defaulting (e.g., a table name that is defaulted from an entity
name or a column name that is defaulted from a field or property name).

By default, the names of database objects must be treated as undelimited identifiers and passed to the
database as such.

For example, assuming the use of an English locale, the following must be passed to the database as
undelimited identifers so that they will be treated as equivalent for all databases that comply with the
SQL Standard’s requirements for the treatment of “regular identifiers” (undelimited identifiers) and
“delimited identifiers” [2]:

@Table (name="Customer")
@Table (name="customer")
@Table (name="cUsTomer")

Similarly, the following must be treated as equivalent:

@JoinColumn (name="CUSTOMER")
@ManyToOne Customer customer;

@JoinColumn (name="customer")
@ManyToOne Customer customer;

@ManyToOne Customer customer;

7/17/17

60 JSR-338 Maintenance Release

Oracle

Naming of Database Objects

Java Persistence 2.2, Maintenance Release Entities

To specify delimited identifiers, one of the following approaches must be used:

It is possible to specify that all database identifiers in use for a persistence unit be treated as
delimited identifiers by specifying the <delimited-identifiers/> element within the
persistence-unit-defaults element of the object/relational xml mapping file. If the
<delimited-identifiers/> element is specified, it cannot be overridden.

It is possible to specify on a per-name basis that a name for a database object is to be inter-
preted as a delimited identifier as follows:

¢ Using annotations, a name is specified as a delimited identifier by enclosing the name
within double quotes, whereby the inner quotes are escaped, e.g.,
@Table (name="\"customer\"") .

e When using XML, a name is specified as a delimited identifier by use of double
quotes, €.g., <table name=""customer"" />[25]

The following annotations contain elements whose values correspond to names of database identifiers
and for which the above rules apply, including when their use is nested within that of other annotations:

EntityResult (discriminatorColumn element)
FieldResult (column element)

ColumnResult (name element)

CollectionTable (name, catalog, schema elements)
Column (name, columnDefinition, table elements)
DiscriminatorColumn (name, columnDefinition elements)
ForeignKey (name, foreignKeyDefinition elements)
Index (name, columnList elements)

JoinColumn (name, referencedColumnName, columnDefinition, table ele-
ments)

JoinTable (name, catalog, schema elements)
MapKeyColumn (name, columnDefinition, table elements)

MapKeyJoinColumn (name, referencedColumnName, columnDefinition,
table elements)

NamedStoredProcedureQuery (procedureName element)
OrderColumn (name, columnDefinition elements)

PrimaryKeyJoinColumn (name, referencedColumnName, columnDefinition
elements)

SecondaryTable (name, catalog, schema elements)
SequenceGenerator (sequenceName, catalog, schema elements)
StoredProcedureParameter (name element)

Table (name, catalog, schema elements)

[25] If <delimited-identifiers> is specified and individual annotations or XML elements or attributes use escaped double quotes, the
double-quotes appear in the name of the database identifier.

JSR-338 Maintenance Release 61 7/17/17

Oracle

Entities Java Persistence 2.2, Maintenance Release Naming of Database Objects

TableGenerator (table, catalog, schema, pkColumnName, valueColumn-
Name elements)

UniqueConstraint (name, columnNames elements)

The following XML elements and types contain elements or attributes whose values correspond to
names of database identifiers and for which the above rules apply:

entity-mappings (schema, catalog elements)
persistence-unit-defaults (schema, catalog elements)
collection-table (name, catalog, schema attributes)

column (name, table, column-definition attributes)
column-result (name attribute)

discriminator-column (name, column-definition attributes)
entity-result (discriminator-column attribute)
field-result (column attribute)

foreign-key (name, foreign-key-definition attributes)
index (name attribute, column-11ist element)

join-column (name, referenced-column-name, column-definition, table
attributes)

join-table (name, catalog, schema attributes)
map-key-column (name, column-definition, table attributes)

map-key-join-column (name, referenced-column-name, column-defini-
tion, table attributes)

named-stored-procedure—-query (procedure—-name attribute)
order-column (name, column-definition attributes)

primary-key-join-column (name, referenced-column-name, column-def-
inition attributes)

secondary-table (name, catalog, schema attributes)
sequence-generator (sequence-name, catalog, schema attributes)
stored-procedure-parameter (name attribute)

table (name, catalog, schema attributes)

table-generator (table, catalog, schema, pk-column-name, value-col-
umn-name attributes)

unique-constraint (name attribute, column-name element)

71717 62 JSR-338 Maintenance Release

Oracle

EntityManager Java Persistence 2.2, Maintenance Release Entity Operations

awmers ENEILy Operations

This chapter describes the use of the EntityManager API to manage the entity instance lifecycle and
the use of the Query API to retrieve and query entities and their persistent state.

3.1 EntityManager

An EntityManager instance is associated with a persistence context. A persistence context is a set of
entity instances in which for any persistent entity identity there is a unique entity instance. Within the
persistence context, the entity instances and their lifecycle are managed. The EntityManager inter-
face defines the methods that are used to interact with the persistence context. The EntityManager
API is used to create and remove persistent entity instances, to find persistent entities by primary key,
and to query over persistent entities.

The set of entities that can be managed by a given EntityManager instance is defined by a persis-
tence unit. A persistence unit defines the set of all classes that are related or grouped by the application,
and which must be colocated in their mapping to a single database.

JSR-338 Maintenance Release 63 7/17/17

Oracle

Entity Operations

Java Persistence 2.2, Maintenance Release EntityManager

Section 3.1 defines the EntityManager interface. The entity instance lifecycle is described in Sec-
tion 3.2. The relationships between entity managers and persistence contexts are described in section
3.3 and in further detail in Chapter 7. Section 3.4 describes mechanisms for concurrency control and
locking. Section 3.5 describes entity listeners and lifecycle callback methods for entities. Section 3.6
describes support for automatic use of Bean Validation. Section 3.7 describes the use of entity graphs to
control the path and boundaries of find and query operations. Section 3.8 describes mechanisms for
defining conversions between entity and database representations for attributes of basic types. Section
3.9 describes mechanisms for portable second-level cache configuration. The Query, TypedQuery,
StoredProcedureQuery, and related interfaces are described in Section 3.10. Section 3.11 pro-
vides a summary of exceptions. The Java Persistence query language is defined in Chapter 4 and the
APIs for the construction of Criteria queries in Chapter 6. The definition of persistence units is
described in Chapter 8.

7/17/17

64 JSR-338 Maintenance Release

Oracle

EntityManager Java Persistence 2.2, Maintenance Release Entity Operations

3.1.1 EntityManager Interface

package Jjavax.persistence;

import Jjava.util.Map;

import Jjava.util.List;

import javax.persistence.metamodel.Metamodel;
import Jjavax.persistence.criteria.CriteriaBuilder;
import Jjavax.persistence.criteria.CriteriaQuery;
import javax.persistence.criteria.CriteriaUpdate;
import javax.persistence.criteria.CriteriaDelete;

/**

* Interface used to interact with the persistence context and to
* create executable query objects.

*/

public interface EntityManager {

/

*

Make an instance managed and persistent.

@param entity

@throws EntityExistsException if the entity already exists.

(If the entity already exists, the EntityExistsException may

be thrown when the persist operation is invoked, or the

EntityExistsException or another PersistenceException may be

thrown at flush or commit time.)

@throws IllegalArgumentException if the instance is not an
entity

@throws TransactionRequiredException if there is no
transaction when invoked on a container-managed
entity manager that is of type
PersistenceContextType.TRANSACTION.

5% X F X X X b % X X ot

*

*/
public void persist (Object entity);

/**

* Merge the state of the given entity into the

current persistence context.

@param entity

@return the managed instance that the state was merged to

@throws IllegalArgumentException if instance is not an
entity or is a removed entity

@throws TransactionRequiredException if there is no
transaction when invoked on a container-managed
entity manager that is of type
PersistenceContextType.TRANSACTION.

X% > b X X X o

*

*/
public <T> T merge (T entity);

/**
* Remove the entity instance.
* @param entity
* @throws IllegalArgumentException if the instance is not an
* entity or is a detached entity
* @throws TransactionRequiredException if there is no
* transaction when invoked on a container-managed
* entity manager that is of type
* PersistenceContextType.TRANSACTION.
*
/

public void remove (Object entity);

JSR-338 Maintenance Release 65 7/17/17

Oracle

Entity Operations

X% > b X X X b % X X ot

*

*

Java Persistence 2.2, Maintenance Release EntityManager

*
Find by primary key.
Search for an entity of the specified class and primary key.
If the entity instance is contained in the persistence context
it is returned from there.
@param entityClass
@param primaryKey
@return the found entity instance or null if the entity does
not exist
@throws IllegalArgumentException if the first argument does
not denote an entity type or the second argument is
is not a valid type for that entity’s primary key or
is null
/

public <T> T find(Class<T> entityClass, Object primaryKey) ;

/*

*

X% X b ok X X ok b X X X ot %

*

*

*

Find by primary key, using the specified properties.

Search for an entity of the specified class and primary key.
If the entity instance is contained in the persistence context
it is returned from there.
If a vendor-specific property or hint is not recognized,
it is silently ignored.
@param entityClass
@param primaryKey
@param properties standard and vendor-specific properties
and hints
@return the found entity instance or null if the entity does
not exist
@throws IllegalArgumentException if the first argument does
not denote an entity type or the second argument is
is not a valid type for that entity’s primary key or
is null
/

public <T> T find(Class<T> entityClass,

5 o > F ot X F ok X X ok F X X X o % X

Object primaryKey,
Map<String, Object> properties);

*

Find by primary key and lock.
Search for an entity of the specified class and primary key
and lock it with respect to the specified lock type.
If the entity instance is contained in the persistence context
it is returned from there, and the effect of this method is
the same as if the lock method had been called on the entity.
If the entity is found within the persistence context and the
lock mode type is pessimistic and the entity has a version
attribute, the persistence provider must perform optimistic
version checks when obtaining the database lock. If these
checks fail, the OptimisticLockException will be thrown.
If the lock mode type is pessimistic and the entity instance
is found but cannot be locked:
- the PessimisticLockException will be thrown if the database
locking failure causes transaction-level rollback
- the LockTimeoutException will be thrown if the database
locking failure causes only statement-level rollback
@param entityClass
@param primaryKey

7/17/17

66 JSR-338 Maintenance Release

Oracle

EntityManager

Lo S S S S . SR S R T

*

*

Java Persistence 2.2, Maintenance Release Entity Operations

@param lockMode

@return the found entity instance or null if the entity does
not exist

@throws IllegalArgumentException if the first argument does
not denote an entity type or the second argument is
not a valid type for that entity's primary key or
is null

@throws TransactionRequiredException if there is no
transaction and a lock mode other than NONE is
specified or if invoked on an entity manager which has
not been joined to the current transaction and a lock
mode other than NONE is specified

@throws OptimisticLockException if the optimistic version
check fails

@throws PessimisticLockException if pessimistic locking
fails and the transaction is rolled back

@throws LockTimeoutException if pessimistic locking fails and
only the statement is rolled back

@throws PersistenceException if an unsupported lock call
is made

/

public <T> T find(Class<T> entityClass,

o S R S S e S S S S S S S R S R R . S S e S

Object primaryKey,
LockModeType lockMode) ;

*

Find by primary key and lock, using the specified properties.
Search for an entity of the specified class and primary key
and lock it with respect to the specified lock type.
If the entity instance is contained in the persistence context
it is returned from there. If the entity is found
within the persistence context and the lock mode type
is pessimistic and the entity has a version attribute, the
persistence provider must perform optimistic version checks
when obtaining the database lock. If these checks fail,
the OptimisticLockException will be thrown.
If the lock mode type is pessimistic and the entity instance
is found but cannot be locked:
- the PessimisticLockException will be thrown if the database
locking failure causes transaction-level rollback
- the LockTimeoutException will be thrown if the database
locking failure causes only statement-level rollback
If a vendor-specific property or hint is not recognized,
it is silently ignored.
Portable applications should not rely on the standard timeout
hint. Depending on the database in use and the locking
mechanisms used by the provider, the hint may or may not
be observed.
@param entityClass
@param primaryKey
@param lockMode
@param properties standard and vendor-specific properties
and hints
@return the found entity instance or null if the entity does
not exist
@throws IllegalArgumentException if the first argument does
not denote an entity type or the second argument is
not a valid type for that entity's primary key or
is null

JSR-338 Maintenance Release 67 7/17/17

Oracle

Entity Operations Java Persistence 2.2, Maintenance Release EntityManager
* @throws TransactionRequiredException if there is no
* transaction and a lock mode other than NONE is
* specified or if invoked on an entity manager which has
* not been joined to the current transaction and a lock
* mode other than NONE is specified
* @throws OptimisticLockException if the optimistic version
* check fails
* @throws PessimisticLockException if pessimistic locking
* fails and the transaction is rolled back
* @throws LockTimeoutException if pessimistic locking fails and
* only the statement is rolled back
* @throws PersistenceException if an unsupported lock call
* is made
*/
public <T> T find(Class<T> entityClass,
Object primaryKey,
LockModeType lockMode,
Map<String, Object> properties);
/ * %
* Get an instance, whose state may be lazily fetched.
* If the requested instance does not exist in the database,
* the EntityNotFoundException is thrown when the instance
* state is first accessed. (The persistence provider runtime is
* permitted to throw the EntityNotFoundException when
* getReference is called.)
* The application should not expect that the instance state will
* be available upon detachment, unless it was accessed by the
* application while the entity manager was open.
* @param entityClass
* @param primaryKey
* @return the found entity instance
* @throws IllegalArgumentException if the first argument does
* not denote an entity type or the second argument is
* not a valid type for that entity’s primary key or
* is null
* @throws EntityNotFoundException if the entity state
* cannot be accessed
*
/
public <T> T getReference (Class<T> entityClass,
Object primaryKey) ;
/ * *
* Synchronize the persistence context to the
* underlying database.
* @throws TransactionRequiredException if there is
* no transaction or if the entity manager has not been
* joined to the current transaction
* @throws PersistenceException if the flush fails
*
/
public void flush();
/ * %
* Set the flush mode that applies to all objects contained
* in the persistence context.
* @param flushMode
*
/
public void setFlushMode (FlushModeType flushMode) ;
71717 68 JSR-338 Maintenance Release

Oracle

EntityManager

/**

*
*
*

*/

Java Persistence 2.2, Maintenance Release Entity Operations

Get the flush mode that applies to all objects contained
in the persistence context.
@return flushMode

public FlushModeType getFlushMode () ;

/**

*

R I R . e S S N . S R . S S I S T I e S e S

*

*/

Lock an entity instance that is contained in the persistence

context with the specified lock mode type.

If a pessimistic lock mode type is specified and the entity

contains a version attribute, the persistence provider must

also perform optimistic version checks when obtaining the

database lock. If these checks fail, the

OptimisticLockException will be thrown.

If the lock mode type is pessimistic and the entity instance

is found but cannot be locked:

- the PessimisticLockException will be thrown if the database
locking failure causes transaction-level rollback
- the LockTimeoutException will be thrown if the database
locking failure causes only statement-level rollback

@param entity

@param lockMode

@throws IllegalArgumentException if the instance is not an
entity or is a detached entity

@throws TransactionRequiredException if there is no
transaction or if invoked on an entity manager which
has not been joined to the current transaction

@throws EntityNotFoundException if the entity does not exist
in the database when pessimistic locking is
performed

@throws OptimisticLockException if the optimistic version
check fails

@throws PessimisticLockException if pessimistic locking fails
and the transaction is rolled back

@throws LockTimeoutException if pessimistic locking fails and
only the statement is rolled back

@throws PersistenceException if an unsupported lock call
is made

public void lock (Object entity, LockModeType lockMode);

/**

*

o5 % >k F X X X b % X X ok ot

Lock an entity instance that is contained in the persistence
context with the specified lock mode type and with specified
properties.
If a pessimistic lock mode type is specified and the entity
contains a version attribute, the persistence provider must
also perform optimistic version checks when obtaining the
database lock. If these checks fail, the
OptimisticLockException will be thrown.
If the lock mode type is pessimistic and the entity instance
is found but cannot be locked:
- the PessimisticLockException will be thrown if the database
locking failure causes transaction-level rollback
- the LockTimeoutException will be thrown if the database
locking failure causes only statement-level rollback
If a vendor-specific property or hint is not recognized,

JSR-338 Maintenance Release

69 717

Oracle

Entity Operations Java Persistence 2.2, Maintenance Release EntityManager

* it is silently ignored.
* Portable applications should not rely on the standard timeout
* hint. Depending on the database in use and the locking
* mechanisms used by the provider, the hint may or may not
* be observed.
* @param entity
* @param lockMode
* @param properties standard and vendor-specific properties
* and hints
* @throws IllegalArgumentException if the instance is not an
* entity or is a detached entity
* @throws TransactionRequiredException if there is no
* transaction or if invoked on an entity manager which
* has not been joined to the current transaction
* @throws EntityNotFoundException if the entity does not exist
* in the database when pessimistic locking is
* performed
* @throws OptimisticLockException if the optimistic version
* check fails
* @throws PessimisticLockException if pessimistic locking fails
* and the transaction is rolled back
* @throws LockTimeoutException if pessimistic locking fails and
* only the statement is rolled back
* @throws PersistenceException if an unsupported lock call
* is made
*/

public void lock (Object entity,

LockModeType lockMode,
Map<String, Object> properties);

/ * %
* Refresh the state of the instance from the database,
* overwriting changes made to the entity, if any.
* @param entity
* @throws IllegalArgumentException if the instance is not
* an entity or the entity is not managed
* @throws TransactionRequiredException if there is no
* transaction when invoked on a container-managed
* entity manager that is of type
* PersistenceContextType.TRANSACTION.
* @throws EntityNotFoundException if the entity no longer
* exists in the database
*
/

public void refresh(Object entity);

/ * *
* Refresh the state of the instance from the database, using
* the specified properties, and overwriting changes made to
* the entity, if any.
* If a vendor-specific property or hint is not recognized,
* it is silently ignored.
* @param entity
* @param properties standard and vendor-specific properties
* and hints
* @throws IllegalArgumentException if the instance is not
* an entity or the entity is not managed
* @throws TransactionRequiredException if there is no
* transaction when invoked on a container-managed
* entity manager that is of type

71717 70 JSR-338 Maintenance Release

Oracle

EntityManager

*
*
*
*

Java Persistence 2.2, Maintenance Release Entity Operations

PersistenceContextType.TRANSACTION.

@throws EntityNotFoundException if the entity no longer
exists in the database

/

public void refresh(Object entity,

Lol . S R S S S i S S S . S S S R R e

*

*

Map<String, Object> properties);

*

Refresh the state of the instance from the database,
overwriting changes made to the entity, if any, and
lock it with respect to given lock mode type.
If the lock mode type is pessimistic and the entity instance
is found but cannot be locked:
- the PessimisticLockException will be thrown if the database
locking failure causes transaction-level rollback
- the LockTimeoutException will be thrown if the
database locking failure causes only statement-level
rollback.
@param entity
@param lockMode
@throws IllegalArgumentException if the instance is not
an entity or the entity is not managed
@throws TransactionRequiredException if invoked on an entity
manager of type PersistenceContextType.TRANSACTION
when there is no transaction; if invoked on an
extended entity manager when there is no transaction
and a lock mode other than NONE has been specified;
or if invoked on an extended entity manager that has
not been joined to the current transaction and a lock
mode other than NONE has been specified
@throws EntityNotFoundException if the entity no longer exists
in the database
@throws PessimisticLockException if pessimistic locking fails
and the transaction is rolled back
@throws LockTimeoutException if pessimistic locking fails and
only the statement is rolled back
@throws PersistenceException if an unsupported lock call
is made
/

public void refresh(Object entity, LockModeType lockMode) ;

/*

*

5 % >k F o X b 3k X X ok ok X X

*

Refresh the state of the instance from the database,
overwriting changes made to the entity, if any, and
lock it with respect to given lock mode type and with
specified properties.
If the lock mode type is pessimistic and the entity instance
is found but cannot be locked:
- the PessimisticLockException will be thrown if the database
locking failure causes transaction-level rollback
- the LockTimeoutException will be thrown if the database
locking failure causes only statement-level rollback
If a vendor-specific property or hint is not recognized,
it is silently ignored.
Portable applications should not rely on the standard timeout
hint. Depending on the database in use and the locking
mechanisms used by the provider, the hint may or may not
be observed.
@param entity

JSR-338 Maintenance Release 71 7/17/17

Oracle

Entity Operations

Java Persistence 2.2, Maintenance Release EntityManager

@param lockMode

@param properties standard and vendor-specific properties
and hints

@throws IllegalArgumentException if the instance is not
an entity or the entity is not managed

@throws TransactionRequiredException if invoked on an entity
manager of type PersistenceContextType.TRANSACTION
when there is no transaction; if invoked on an
extended entity manager when there is no transaction
and a lock mode other than NONE has been specified;
or if invoked on an extended entity manager that has
not been joined to the current transaction and a lock
mode other than NONE has been specified

@throws EntityNotFoundException if the entity no longer exists
in the database

@throws PessimisticLockException if pessimistic locking fails
and the transaction is rolled back

@throws LockTimeoutException if pessimistic locking fails and
only the statement is rolled back

@throws PersistenceException if an unsupported lock call
is made

5 X > b ot X F b X X ok F X X X o % X

*

*/
public void refresh(Object entity,
LockModeType lockMode,
Map<String, Object> properties);

/**

* Clear the persistence context, causing all managed

* entities to become detached. Changes made to entities that
* have not been flushed to the database will not be

* persisted.

*/

public void clear();

/**

* Remove the given entity from the persistence context, causing
a managed entity to become detached. Unflushed changes made
to the entity if any (including removal of the entity),
will not be synchronized to the database. Entities which
previously referenced the detached entity will continue to
reference 1it.

@param entity
@throws IllegalArgumentException if the instance is not an

* entity

*/
public void detach (Object entity);

/**
* Check if the instance is a managed entity instance belonging
* to the current persistence context.
* @param entity
* @return boolean indicating if entity is in persistence context
* @throws IllegalArgumentException if not an entity
*
/

public boolean contains (Object entity);

L S S

7/17/17

72 JSR-338 Maintenance Release

Oracle

EntityManager Java Persistence 2.2, Maintenance Release Entity Operations
/ * *
* Get the current lock mode for the entity instance.
* @param entity
* @return lock mode
* @throws TransactionRequiredException if there is no
* transaction or if the entity manager has not been
* joined to the current transaction
*

@throws IllegalArgumentException if the instance is not a
managed entity and a transaction is active

*

*/
public LockModeType getLockMode (Object entity);

/**

* Set an entity manager property or hint. If a vendor-specific
property or hint is not recognized, it is silently ignored.
@param propertyName name of property or hint
@param value
@throws IllegalArgumentException if the second argument is

* not valid for the implementation

*

/
public void setProperty(String propertyName, Object wvalue);

X % X ot

/**
* Get the properties and hints and associated values that are
* in effect for the entity manager. Changing the contents of
* the map does not change the configuration in effect.
* @return map of properties and hints in effect
*/

public Map<String, Object> getProperties();

/**

* Create an instance of Query for executing a

Java Persistence query language statement.

@param glString a Java Persistence query string

@return the new query instance

@throws IllegalArgumentException if the query string is
* found to be invalid

*
/

public Query createQuery(String glString);

X % X ot

/**

* Create an instance of TypedQuery for executing a

* criteria query.
* @param criteriaQuery a criteria query object
* @return the new query instance
* @throws IllegalArgumentException if the criteria query is
* found to be invalid
*
/

public <T> TypedQuery<T> createQuery (
CriteriaQuery<T> criteriaQuery);
/**

* Create an instance of Query for executing a criteria
update query.
@param updateQuery a criteria update query object
@return the new query instance
@throws IllegalArgumentException if the update query is
* found to be invalid
*
/
public Query createQuery(CriteriaUpdate updateQuery) ;

* % X X

JSR-338 Maintenance Release 73 7/17/17

Oracle

Entity Operations

X % X o % %

*

*

Java Persistence 2.2, Maintenance Release EntityManager

*

Create an instance of Query for executing a criteria

delete query.

@param deleteQuery a criteria delete query object

@return the new query instance

@throws IllegalArgumentException if the delete query is
found to be invalid

/

public Query createQuery(CriteriaDelete deleteQuery);

/*

*

X% X b o X X ok ot

*

*

*

Create an instance of TypedQuery for executing a

Java Persistence query language statement.

The select list of the gquery must contain only a single

item, which must be assignable to the type specified by

the resultClass argument. J

@param glString a Java Persistence query string

@param resultClass the type of the query result

@return the new query instance

@throws IllegalArgumentException if the query string is found
to be invalid or if the query result is found to
not be assignable to the specified type

/

public <T> TypedQuery<T> createQuery(String glString,

Class<T> resultClass);

/**
* Create an instance of Query for executing a named query
* (in the Java Persistence query language or in native SQL).
* @param name the name of a query defined in metadata
* @return the new query instance
* @throws IllegalArgumentException if a query has not been
* defined with the given name or if the query string is
* found to be invalid
*
/

public Query createNamedQuery (String name) ;

/**

*

Create an instance of TypedQuery for executing a

* Java Persistence query language named query.
* The select list of the query must contain only a single
* item, which must be assignable to the type specified by
* the resultClass argument. J
* @param name the name of a query defined in metadata
* @param resultClass the type of the query result
* @return the new query instance
* @throws IllegalArgumentException if a query has not been
* defined with the given name or if the query string is
* found to be invalid or if the query result is found to
* not be assignable to the specified type
*
/

public <T> TypedQuery<T> createNamedQuery (String name,

Class<T> resultClass);

[26] The semantics of this method may be extended in a future release of this specification to support other result types. Applications
that specify other result types (e.g., Tuple.class) will not be portable.

[27] The semantics of this method may be extended in a future release of this specification to support other result types. Applications
that specify other result types (e.g., Tuple.class) will not be portable.

7/17/17

74 JSR-338 Maintenance Release

Oracle

EntityManager Java Persistence 2.2, Maintenance Release Entity Operations

*

Create an instance of Query for executing a native SQL
statement, e.g., for update or delete.

If the gquery is not an update or delete query, query
execution will result in each row of the SQL result
being returned as a result of type Object[] (or a result
of type Object if there is only one column in the select
list.) Column values are returned in the order of their
appearance in the select list and default JDBC type
mappings are applied.

@param sqglString a native SQL query string

@return the new query instance

% X o X X X o % X%

*

*/
public Query createNativeQuery (String sglString);

/**
* Create an instance of Query for executing
* a native SQL query.
* @param sglString a native SQL query string
* @param resultClass the class of the resulting instance(s)
* @return the new query instance
*
/
public Query createNativeQuery (String sglString,
Class resultClass);

*

/
Create an instance of Query for executing
a native SQL query.
@param sglString a native SQL query string
@param resultSetMapping the name of the result set mapping
* @return the new query instance
*
/
public Query createNativeQuery (String sglString,
String resultSetMapping) ;

X % X o %

/**
* Create an instance of StoredProcedureQuery for executing a
* stored procedure in the database.
* @param name name assigned to the stored procedure query
* in metadata
* @return the new stored procedure query instance
* @throws IllegalArgumentException if a query has not been
* defined with the given name
*
/

public StoredProcedureQuery createNamedStoredProcedureQuery (
String name) ;

*

Create an instance of StoredProcedureQuery for executing a

stored procedure in the database.

Parameters must be registered before the stored procedure can

be executed.

If the stored procedure returns one or more result sets,

any result set will be returned as a list of type Object[].

@param procedureName name of the stored procedure in the

database

@return the new stored procedure query instance

@throws IllegalArgumentException if a stored procedure of the
given name does not exist (or the query execution

R R . S SRS N I

JSR-338 Maintenance Release 75 7/17/17

Oracle

Entity Operations

*
*

Java Persistence 2.2, Maintenance Release EntityManager

will fail)
/

public StoredProcedureQuery createStoredProcedureQuery (

X% X ok b o X ok F X X X b X X X

*

*

String procedureName) ;

*

Create an instance of StoredProcedureQuery for executing a
stored procedure in the database.
Parameters must be registered before the stored procedure can
be executed.
The resultClass arguments must be specified in the order in
which the result sets will be returned by the stored procedure
invocation.
@param procedureName name of the stored procedure in the
database
@param resultClasses classes to which the result sets
produced by the stored procedure are to
be mapped
@return the new stored procedure query instance
@throws IllegalArgumentException if a stored procedure of the
given name does not exist (or the query execution
will fail)
/

public StoredProcedureQuery createStoredProcedureQuery (

X% % ok b o X ok F X X X ok X X X

*

*

String procedureName, Class... resultClasses);

*

Create an instance of StoredProcedureQuery for executing a
stored procedure in the database.
Parameters must be registered before the stored procedure can
be executed.
The resultSetMapping arguments must be specified in the order
in which the result sets will be returned by the stored
procedure invocation.
@param procedureName name of the stored procedure in the
database
@param resultSetMappings the names of the result set mappings
to be used in mapping result sets
returned by the stored procedure
@return the new stored procedure query instance
@throws IllegalArgumentException if a stored procedure or
result set mapping of the given name does not exist
(or the query execution will fail)

/

public StoredProcedureQuery createStoredProcedureQuery (

X% ok ok X X X o

*

*

String procedureName, String... resultSetMappings);

*

Indicate to the entity manager that a JTA transaction is
active. This method should be called on a JTA application
managed entity manager that was created outside the scope
of the active transaction or on an entity manager of type
SynchronizationType.UNSYNCHRONIZED to associate it with the
current JTA transaction.
@throws TransactionRequiredException if there is

no transaction
/

public void joinTransaction();

7/17/17

76 JSR-338 Maintenance Release

Oracle

EntityManager Java Persistence 2.2, Maintenance Release Entity Operations

Determine whether the entity manager is joined to the
current transaction. Returns false if the entity manager
is not joined to the current transaction or if no
transaction is active

* @return boolean

*

/

public boolean isJoinedToTransaction();

* % X ok ot

*

Return an object of the specified type to allow access to the
provider-specific API. If the provider's EntityManager
implementation does not support the specified class, the
PersistenceException is thrown.
@param cls the class of the object to be returned. This is
normally either the underlying EntityManager implementation
class or an interface that it implements.
@return an instance of the specified class
@throws PersistenceException if the provider does not

support the call

bR R R . S

*

*/
public <T> T unwrap (Class<T> cls);

/**
* Return the underlying provider object for the EntityManager,
* if available. The result of this method is implementation
* gspecific. The unwrap method is to be preferred for new
* applications.

* @return underlying provider object for EntityManager
*
/

public Object getDelegate();

/**
* Close an application-managed entity manager.
After the close method has been invoked, all methods
on the EntityManager instance and any Query, TypedQuery, and
StoredProcedureQuery objects obtained from it will throw the
IllegalStateException except for getProperties,
getTransaction, and isOpen (which will return false).
If this method is called when the entity manager is
joined to an active transaction, the persistence
context remains managed until the transaction completes.
@throws IllegalStateException if the entity manager

is container-managed

% X b X X X ot

*

*/

public void close();

/**

* Determine whether the entity manager is open.

* @return true until the entity manager has been closed
*/

public boolean isOpen();

JSR-338 Maintenance Release 77 7/17/17

Oracle

Entity Operations

Java Persistence 2.2, Maintenance Release EntityManager

/**
* Return the resource-level EntityTransaction object.
* The EntityTransaction instance may be used serially to
* begin and commit multiple transactions.
* @return EntityTransaction instance
* @throws IllegalStateException if invoked on a JTA
* entity manager
*
/

public EntityTransaction getTransaction () ;

/**
* Return the entity manager factory for the entity manager.
* @return EntityManagerFactory instance
* @throws IllegalStateException if the entity manager has
* been closed
*/
public EntityManagerFactory getEntityManagerFactory () :;

/**

* Return an instance of CriteriaBuilder for the creation of
* CriteriaQuery objects.

* @return CriteriaBuilder instance

* @throws IllegalStateException if the entity manager has

* been closed

*/

public CriteriaBuilder getCriteriaBuilder();

/**
* Return an instance of Metamodel interface for access to the
* metamodel of the persistence unit.
* @return Metamodel instance
* @throws IllegalStateException if the entity manager has
* been closed
*/
public Metamodel getMetamodel () ;

/**
* Return a mutable EntityGraph that can be used to dynamically
* create an EntityGraph.
* @param rootType class of entity graph
* (@return entity graph
*/
public <T> EntityGraph<T> createEntityGraph (Class<T> rootType);

/**
* Return a mutable copy of the named EntityGraph. If there
* is no entity graph with the specified name, null is returned.
* @param graphName name of an entity graph
* @return entity graph
*/
public EntityGraph<?> createEntityGraph (String graphName) ;

7/17/17

78 JSR-338 Maintenance Release

Oracle

EntityManager

Java Persistence 2.2, Maintenance Release Entity Operations

/**

* Return a named EntityGraph. The returned EntityGraph

* should be considered immutable.

* (@param graphName name of an existing entity graph

* (@return named entity graph

* @throws IllegalArgumentException if there is no EntityGraph of
* the given name

*/

public EntityGraph<?> getEntityGraph (String graphName) ;

/**
* Return all named EntityGraphs that have been defined for the
* provided class type.
* @param entityClass entity class
* @return list of all entity graphs defined for the entity
* @throws IllegalArgumentException if the class is not an entity
*
/

public <T> List<EntityGraph<? super T>>

getEntityGraphs (Class<T> entityClass);
}

The persist, merge, remove, and refresh methods must be invoked within a transaction con-
text when an entity manager with a transaction-scoped persistence context is used. If there is no transac-
tion context, the Javax.persistence.TransactionRequiredException is thrown.

Methods that specify a lock mode other than LockModeType . NONE must be invoked within a trans-
action. If there is no transaction or if the entity manager has not been joined to the transaction, the
javax.persistence.TransactionRequiredException is thrown.

The find method (provided it is invoked without a lock or invoked with LockModeType . NONE)
and the getReference method are not required to be invoked within a transaction. If an entity man-
ager with transaction-scoped persistence context is in use, the resulting entities will be detached; if an
entity manager with an extended persistence context is used, they will be managed. See section 3.3 for
entity manager use outside a transaction.

The Query, TypedQuery, StoredProcedureQuery, CriteriaBuilder, Metamodel, and
EntityTransaction objects obtained from an entity manager are valid while that entity manager is
open.

If the argument to the createQuery method is not a valid Java Persistence query string or a valid
CriteriaQuery object, the I1legalArgumentException may be thrown or the query execu-
tion will fail and a PersistenceException will be thrown. If the result class specification of a
Java Persistence query language query is incompatible with the result of the query, the T11egalAr-
gumentException may be thrown when the createQuery method is invoked or the query execu-
tion will fail and a PersistenceException will be thrown when the query is executed. If a native
query is not a valid query for the database in use or if the result set specification is incompatible with the
result of the query, the query execution will fail and a PersistenceException will be thrown
when the query is executed. The PersistenceException should wrap the underlying database
exception when possible.

Runtime exceptions thrown by the methods of the EntityManager interface other than the Lock-
TimeoutException will cause the current transaction to be marked for rollback if the persistence
context is joined to that transaction.

JSR-338 Maintenance Release 79 7/17/17

Oracle

Entity Operations

3.1.2

Java Persistence 2.2, Maintenance Release Entity Instance’s Life Cycle

The methods close, isOpen, joinTransaction, and getTransaction are used to manage
application-managed entity managers and their lifecycle. See Section 7.2.2, “Obtaining an Applica-
tion-managed Entity Manager”.

The EntityManager interface and other interfaces defined by this specification contain methods that
take properties and/or hints as arguments. This specification distinguishes between properties and hints
as follows:

A property defined by this specification must be observed by the provider unless otherwise
explicitly stated.

A hint specifies a preference on the part of the application. While a hint defined by this specifi-
cation should be observed by the provider if possible, a hint may or may not always be
observed. A portable application must not depend on the observance of a hint.

Example of Use of EntityManager API

3.2

@Stateless public class OrderEntryBean implements OrderEntry {

@PersistenceContext EntityManager em;

public void enterOrder (int custID, Order newOrder) {

Customer cust = em.find(Customer.class, custID);
cust.getOrders () .add (newOrder) ;
newOrder.setCustomer (cust) ;

em.persist (newOrder) ;

Entity Instance’s Life Cycle

This section describes the EntityManager operations for managing an entity instance’s lifecycle. An
entity instance can be characterized as being new, managed, detached, or removed.

A new entity instance has no persistent identity, and is not yet associated with a persistence
context.

A managed entity instance is an instance with a persistent identity that is currently associated
with a persistence context.

A detached entity instance is an instance with a persistent identity that is not (or no longer)
associated with a persistence context.

A removed entity instance is an instance with a persistent identity, associated with a persis-
tence context, that will be removed from the database upon transaction commit.

7/17/17

80 JSR-338 Maintenance Release

Oracle

Entity Instance’s Life Cycle Java Persistence 2.2, Maintenance Release Entity Operations

3.2.1

The following subsections describe the effect of lifecycle operations upon entities. Use of the cascade
annotation element may be used to propagate the effect of an operation to associated entities. The cas-
cade functionality is most typically used in parent-child relationships.

Entity Instance Creation

3.2.2

Entity instances are created by means of the new operation. An entity instance, when first created by
new is not yet persistent. An instance becomes persistent by means of the EntityManager APL

Persisting an Entity Instance

3.23

A new entity instance becomes both managed and persistent by invoking the persist method on it or
by cascading the persist operation.

The semantics of the persist operation, applied to an entity X are as follows:

e If X is a new entity, it becomes managed. The entity X will be entered into the database at or
before transaction commit or as a result of the flush operation.

e [If X is a preexisting managed entity, it is ignored by the persist operation. However, the persist
operation is cascaded to entities referenced by X, if the relationships from X to these other
entities are annotated with the cascade=PERSIST or cascade=ALL annotation element
value or specified with the equivalent XML descriptor element.

e If X is a removed entity, it becomes managed.

e If X is a detached object, the EntityExistsException may be thrown when the persist
operation is invoked, or the EntityExistsException or another PersistenceEx-
ception may be thrown at flush or commit time.

e For all entities Y referenced by a relationship from X, if the relationship to Y has been anno-

tated with the cascade element value cascade=PERSIST or cascade=ALL, the persist
operation is applied to Y.

Removal

A managed entity instance becomes removed by invoking the remove method on it or by cascading the
remove operation.

The semantics of the remove operation, applied to an entity X are as follows:
e If X is a new entity, it is ignored by the remove operation. However, the remove operation is

cascaded to entities referenced by X, if the relationship from X to these other entities is anno-
tated with the cascade=REMOVE or cascade=ALL annotation element value.

JSR-338 Maintenance Release 81 7/17/17

Oracle

Entity Operations

3.24

Java Persistence 2.2, Maintenance Release Entity Instance’s Life Cycle

e If X is a managed entity, the remove operation causes it to become removed. The remove oper-
ation is cascaded to entities referenced by X, if the relationships from X to these other entities
is annotated with the cascade=REMOVE or cascade=ALL annotation element value.

e [f X is a detached entity, an T1legalArgumentException will be thrown by the remove
operation (or the transaction commit will fail).

e If X is a removed entity, it is ignored by the remove operation.

¢ A removed entity X will be removed from the database at or before transaction commit or as a
result of the flush operation.

After an entity has been removed, its state (except for generated state) will be that of the entity at the
point at which the remove operation was called.

Synchronization to the Database

In general, a persistence context will be synchronized to the database as described below. However, a
persistence context of type SynchronizationType.UNSYNCHRONIZED or an application-man-
aged persistence context that has been created outside the scope of the current transaction will only be
synchronized to the database if it has been joined to the current transaction by the application’s use of
the EntityManager joinTransaction method.

The state of persistent entities is synchronized to the database at transaction commit. This synchroniza-
tion involves writing to the database any updates to persistent entities and their relationships as speci-
fied above.

An update to the state of an entity includes both the assignment of a new value to a persistent property

or field of the entity as well as the modification of a mutable value of a persistent property or field[?8.

Synchronization to the database does not involve a refresh of any managed entities unless the refresh
operation is explicitly invoked on those entities or cascaded to them as a result of the specification of
the cascade=REFRESH or cascade=ALL annotation element value.

Bidirectional relationships between managed entities will be persisted based on references held by the
owning side of the relationship. It is the developer’s responsibility to keep the in-memory references
held on the owning side and those held on the inverse side consistent with each other when they change.
In the case of unidirectional one-to-one and one-to-many relationships, it is the developer’s responsibil-
ity to insure that the semantics of the relationships are adhered to.12°]

1t is particularly important to ensure that changes to the inverse side of a relationship result in
appropriate updates on the owning side, so as to ensure the changes are not lost when they are
synchronized to the database.

[28] This includes, for example. modifications to persistent attributes of type char[] and byte[].

[29] This might be an issue if unique constraints (such as those described for the default mappings in sections 2.10.3.1 and 2.10.5.1)

were not applied in the definition of the object/relational mapping.

7/17/17

82 JSR-338 Maintenance Release

Oracle

Entity Instance’s Life Cycle Java Persistence 2.2, Maintenance Release Entity Operations

The persistence provider runtime is permitted to perform synchronization to the database at other times
as well when a transaction is active and the persistence context is joined to the transaction. The f1ush
method can be used by the application to force synchronization. It applies to entities associated with the
persistence context. The setFlushMode methods of the EntityManager, Query,
TypedQuery, and StoredProcedureQuery interfaces can be used to control synchronization
semantics. The effect of FlushModeType.AUTO is defined in section 3.10.8. If FlushMode-
Type.COMMIT is specified, flushing will occur at transaction commit; the persistence provider is per-
mitted, but not required, to perform to flush at other times. If there is no transaction active or if the
persistence context has not been joined to the current transaction, the persistence provider must not
flush to the database.

The semantics of the flush operation, applied to an entity X are as follows:

e If X is a managed entity, it is synchronized to the database.

¢ For all entities Y referenced by a relationship from X, if the relationship to Y has been
annotated with the cascade element value cascade=PERSIST or cas-
cade=ALL, the persist operation is applied to Y.

e For any entity Y referenced by a relationship from X, where the relationship to Y has
not been annotated with the cascade element value cascade=PERSIST or cas-
cade=ALL:

e IfY is new or removed, an I1legalStateException will be thrown
by the flush operation (and the transaction marked for rollback) or the trans-
action commit will fail.

e IfY is detached, the semantics depend upon the ownership of the relation-
ship. If X owns the relationship, any changes to the relationship are synchro-
nized with the database; otherwise, if Y owns the relationships, the behavior
is undefined.

e If X is a removed entity, it is removed from the database. No cascade options are relevant.

3.2.5 Refreshing an Entity Instance

The state of a managed entity instance is refreshed from the database by invoking the re fresh method
on it or by cascading the refresh operation.

The semantics of the refresh operation, applied to an entity X are as follows:
e If X is a managed entity, the state of X is refreshed from the database, overwriting changes
made to the entity, if any. The refresh operation is cascaded to entities referenced by X if the
relationship from X to these other entities is annotated with the cascade=REFRESH or

cascade=ALL annotation element value.

e If X is a new, detached, or removed entity, the I11egalArgumentException is thrown.

JSR-338 Maintenance Release 83 7/17/17

Oracle

Entity Operations

3.2.6

Java Persistence 2.2, Maintenance Release Entity Instance’s Life Cycle

Evicting an Entity Instance from the Persistence Context

3.2.7

An entity instance is removed from the persistence context by invoking the detach method on it or
cascading the detach operation. Changes made to the entity, if any (including removal of the entity),
will not be synchronized to the database after such eviction has taken place.

Applications must use the £1ush method prior to the detach method to ensure portable semantics if
changes have been made to the entity (including removal of the entity). Because the persistence pro-
vider may write to the database at times other than the explicit invocation of the £ 1ush method, porta-
ble applications must not assume that changes have not been written to the database if the f1ush
method has not been called prior to detach.

The semantics of the detach operation, applied to an entity X are as follows:

e If X is a managed entity, the detach operation causes it to become detached. The detach opera-
tion is cascaded to entities referenced by X if the relationships from X to these other entities is
annotated with the cascade=DETACH or cascade=ALL annotation element value. Entities
which previously referenced X will continue to reference X.

e If X is a new or detached entity, it is ignored by the detach operation.

e [f X is aremoved entity, the detach operation causes it to become detached. The detach opera-
tion is cascaded to entities referenced by X if the relationships from X to these other entities is
annotated with the cascade=DETACH or cascade=ALL annotation element value. Entities
which previously referenced X will continue to reference X. Portable applications should not
pass removed entities that have been detached from the persistence context to further Entity-
Manager operations.

Detached Entities

A detached entity results from transaction commit if a transaction-scoped persistence context is used
(see section 3.3); from transaction rollback (see section 3.3.3); from detaching the entity from the per-
sistence context; from clearing the persistence context; from closing an entity manager; or from serializ-
ing an entity or otherwise passing an entity by value—e.g., to a separate application tier, through a
remote interface, etc.

Detached entity instances continue to live outside of the persistence context in which they were per-
sisted or retrieved. Their state is no longer guaranteed to be synchronized with the database state.

The application may access the available state of available detached entity instances after the persis-
tence context ends. The available state includes:

* Any persistent field or property not marked fetch=LAZY

¢ Any persistent field or property that was accessed by the application or fetched by means of an
entity graph

7/17/17

84 JSR-338 Maintenance Release

Oracle

Entity Instance’s Life Cycle Java Persistence 2.2, Maintenance Release Entity Operations

If the persistent field or property is an association, the available state of an associated instance may only
be safely accessed if the associated instance is available. The available instances include:

* Any entity instance retrieved using £ind ().
* Any entity instances retrieved using a query or explicitly requested in a fetch join.

¢ Any entity instance for which an instance variable holding non-primary-key persistent state
was accessed by the application.

¢ Any entity instance that can be reached from another available instance by navigating associa-
tions marked fetch=EAGER.

3.2.7.1 Merging Detached Entity State

The merge operation allows for the propagation of state from detached entities onto persistent entities
managed by the entity manager.

The semantics of the merge operation applied to an entity X are as follows:

¢ If X is a detached entity, the state of X is copied onto a pre-existing managed entity instance X'
of the same identity or a new managed copy X' of X is created.

¢ If X is a new entity instance, a new managed entity instance X' is created and the state of X is
copied into the new managed entity instance X'.

e IfXisaremoved entity instance, an I1legal ArgumentException will be thrown by the
merge operation (or the transaction commit will fail).

e If X is a managed entity, it is ignored by the merge operation, however, the merge operation is
cascaded to entities referenced by relationships from X if these relationships have been anno-
tated with the cascade element value cascade=MERGE or cascade=ALL annotation.

e For all entities Y referenced by relationships from X having the cascade element value
cascade=MERGE or cascade=ALL, Y is merged recursively as Y'. For all such Y refer-
enced by X, X' is set to reference Y'. (Note that if X is managed then X is the same object as
X")

¢ If X is an entity merged to X', with a reference to another entity Y, where cascade=MERGE
or cascade=ALL is not specified, then navigation of the same association from X' yields a
reference to a managed object Y' with the same persistent identity as Y.

The persistence provider must not merge fields marked LAZY that have not been fetched: it must ignore
such fields when merging.

Any Version columns used by the entity must be checked by the persistence runtime implementation
during the merge operation and/or at flush or commit time. In the absence of Version columns there is
no additional version checking done by the persistence provider runtime during the merge operation.

JSR-338 Maintenance Release 85 7/17/17

Oracle

Entity Operations

Java Persistence 2.2, Maintenance Release Entity Instance’s Life Cycle

3.2.7.2 Detached Entities and Lazy Loading

3.2.8

Serializing entities and merging those entities back into a persistence context may not be interoperable
across vendors when lazy properties or fields and/or relationships are used.

A vendor is required to support the serialization and subsequent deserialization and merging of detached
entity instances (which may contain lazy properties or fields and/or relationships that have not been
fetched) back into a separate JVM instance of that vendor's runtime, where both runtime instances have

access to the entity classes and any required vendor persistence implementation classes.

When interoperability across vendors is required, the application must not use lazy loading.

Managed Instances

3.2.9

It is the responsibility of the application to insure that an instance is managed in only a single persis-
tence context. The behavior is undefined if the same Java instance is made managed in more than one
persistence context.

The contains () method can be used to determine whether an entity instance is managed in the cur-
rent persistence context.

The contains method returns true:

¢ If the entity has been retrieved from the database or has been returned by getReference,
and has not been removed or detached.

e Ifthe entity instance is new, and the persi st method has been called on the entity or the per-
sist operation has been cascaded to it.

The contains method returns false:
e Ifthe instance is detached.

e If the remove method has been called on the entity, or the remove operation has been cas-
caded to it.

e Ifthe instance is new, and the persist method has not been called on the entity or the persist
operation has not been cascaded to it.

Note that the effect of the cascading of persist, merge, remove, or detach is immediately visible to the

contains method, whereas the actual insertion, modification, or deletion of the database representa-
tion for the entity may be deferred until the end of the transaction.

Load State

An entity is considered to be loaded if all attributes with FetchType . EAGER—whether explictly
specified or by default—(including relationship and other collection-valued attributes) have been
loaded from the database or assigned by the application. Attributes with FetchType.LAZY may or
may not have been loaded. The available state of the entity instance and associated instances is as
described in section 3.2.7.

7/17/17

86 JSR-338 Maintenance Release

Oracle

Persistence Context Lifetime and Synchronization TypeJava Persistence 2.2, Maintenance Release Entity Operations

33

An attribute that is an embeddable is considered to be loaded if the embeddable attribute was loaded
from the database or assigned by the application, and, if the attribute references an embeddable instance
(i.e., is not null), the embeddable instance state is known to be loaded (i.e., all attributes of the
embeddable with FetchType . EAGER have been loaded from the database or assigned by the applica-
tion).

A collection-valued attribute is considered to be loaded if the collection was loaded from the database
or the value of the attribute was assigned by the application, and, if the attribute references a collection
instance (i.e., is not null), each element of the collection (e.g. entity or embeddable) is considered to be
loaded.

A single-valued relationship attribute is considered to be loaded if the relationship attribute was loaded
from the database or assigned by the application, and, if the attribute references an entity instance (i.e.,
is not null), the entity instance state is known to be loaded.

A basic attribute is considered to be loaded if its state has been loaded from the database or assigned by
the application.

The PersistenceUtil.isLoaded methods can be used to determine the load state of an entity
and its attributes regardless of the persistence unit with which the entity is associated. The Persis-
tenceUtil.isLoaded methods return true if the above conditions hold, and false otherwise. If the
persistence unit is known, the PersistenceUnitUtil. isLoaded methods can be used instead.
See section 7.11.

Persistence provider contracts for determining the load state of an entity or entity attribute are described
in section 9.8.1.

Persistence Context Lifetime and Synchronization Type

The lifetime of a container-managed persistence context can either be scoped to a transaction (transac-
tion-scoped persistence context), or have a lifetime scope that extends beyond that of a single transac-
tion (extended persistence context). The enum PersistenceContextType is used to define the
persistence context lifetime scope for container-managed entity managers. The persistence context life-
time scope is defined when the EntityManager instance is created (whether explicitly, or in conjunction
with injection or JNDI lookup). See Section 7.6.

package javax.persistence;

public enum PersistenceContextType {
TRANSACTION,
EXTENDED

}

By default, the lifetime of the persistence context of a container-managed entity manager corresponds to
the scope of a transaction (i.e., it is of type PersistenceContextType . TRANSACTION).

When an extended persistence context is used, the extended persistence context exists from the time the
EntityManager instance is created until it is closed. This persistence context might span multiple trans-
actions and non-transactional invocations of the EntityManager.

JSR-338 Maintenance Release 87 7/17/17

Oracle

Entity Operations

3.3.1

Java Persistence 2.2, Maintenance Release Persistence Context Lifetime and Synchroni-

An EntityManager with an extended persistence context maintains its references to the entity objects
after a transaction has committed. Those objects remain managed by the EntityManager, and they can
be updated as managed objects between transactions.!3] Navigation from a managed object in an
extended persistence context results in one or more other managed objects regardless of whether a trans-
action is active.

When an EntityManager with an extended persistence context is used, the persist, remove, merge, and
refresh operations can be called regardless of whether a transaction is active. The effects of these opera-
tions will be committed to the database when the extended persistence context is enlisted in a transac-
tion and the transaction commits.

The scope of the persistence context of an application-managed entity manager is extended. It is the
responsibility of the application to manage the lifecycle of the persistence context.

Container-managed persistence contexts are described further in section 7.6. Persistence contexts man-
aged by the application are described further in section 7.7.

Synchronization with the Current Transaction

3.3.2

By default, a container-managed persistence context is of SynchronizationType.SYNCHRO-
NIZED and is automatically joined to the current transaction. A persistence context of Synchroni-
zationType.UNSYNCHRONIZED will not be enlisted in the current transaction, unless the
EntityManager joinTransaction method is invoked.

By default, an application-managed persistence context that is associated with a JTA entity manager and
that is created within the scope of an active transaction is automatically joined to that transaction. An
application-managed JTA persistence context that is created outside the scope of a transaction or an
application-managed persistence context of type SynchronizationType.UNSYNCHRONIZED
will not be joined to that transaction unless the EntityManager joinTransaction method is
invoked.

An application-managed persistence context associated with a resource-local entity manager is always
automatically joined to any resource-local transaction that is begun for that entity manager.

Persistence context synchronization type is described further in section 7.6.1.

Transaction Commit

The managed entities of a transaction-scoped persistence context become detached when the transaction
commits; the managed entities of an extended persistence context remain managed.

[30] Note that when a new transaction is begun, the managed objects in an extended persistence context are not reloaded from the data-

base.

7/17/17

88 JSR-338 Maintenance Release

Oracle

Locking and Concurrency Java Persistence 2.2, Maintenance Release Entity Operations

3.3.3 Transaction Rollback

For both transaction-scoped persistence contexts and for extended persistence contexts that are joined to
the current transaction, transaction rollback causes all pre-existing managed instances and removed
instances®'! to become detached. The instances’ state will be the state of the instances at the point at
which the transaction was rolled back. Transaction rollback typically causes the persistence context to
be in an inconsistent state at the point of rollback. In particular, the state of version attributes and gener-
ated state (e.g., generated primary keys) may be inconsistent. Instances that were formerly managed by
the persistence context (including new instances that were made persistent in that transaction) may
therefore not be reusable in the same manner as other detached objects—for example, they may fail
when passed to the merge operation.[32

NOTE: Because a transaction-scoped persistence context’s lifetime is scoped to a transaction
regardless of whether it is joined to that transaction, the container closes the persistence con-
text upon transaction rollback. However, an extended persistence context that is not joined to a
transaction is unaffected by transaction rollback.

3.4 Locking and Concurrency

This specification assumes the use of optimistic concurrency control. It assumes that the databases to
which persistence units are mapped will be accessed by the implementation using read-committed isola-
tion (or a vendor equivalent in which long-term read locks are not held), and that writes to the database
will typically occur only when the £1ush method has been invoked—whether explicitly by the appli-
cation, or by the persistence provider runtime in accordance with the flush mode setting.

If a transaction is active and the persistence context is joined to the transaction, a compliant
implementation of this specification is permitted to write to the database immediately (i.e.,
whenever a managed entity is updated, created, and/or removed), however, the configuration
of an implementation to require such non-deferred database writes is outside the scope of this
specification. 1331

In addition, both pessimistic and optimistic locking are supported for selected entities by means of spec-
ified lock modes. Optimistic locking is described in sections 3.4.1 and 3.4.2; pessimistic locking in sec-
tion 3.4.3. Section 3.4.4 describes the setting of optimistic and pessimistic lock modes. The
configuration of the setting of optimistic lock modes is described in section 3.4.4.1, and the configura-
tion of the setting of pessimistic lock modes is described in section 3.4.4.2.

[31] These are instances that were persistent in the database at the start of the transaction.

[32] Itis unspecified as to whether instances that were not persistent in the database behave as new instances or detached instances
after rollback. This may be implementation-dependent.

[33] Applications may require that database isolation levels higher than read-committed be in effect. The configuration of the setting
database isolation levels, however, is outside the scope of this specification.

JSR-338 Maintenance Release 89 7/17/17

Oracle

Entity Operations

34.1

Java Persistence 2.2, Maintenance Release Locking and Concurrency

Optimistic Locking

3.4.2

Optimistic locking is a technique that is used to insure that updates to the database data corresponding
to the state of an entity are made only when no intervening transaction has updated that data since the
entity state was read. This insures that updates or deletes to that data are consistent with the current
state of the database and that intervening updates are not lost. Transactions that would cause this con-
straint to be violated result in an OptimisticLockException being thrown and the transaction
marked for rollback.

Portable applications that wish to enable optimistic locking for entities must specify Version
attributes for those entities—i.e., persistent properties or fields annotated with the Version annotation
or specified in the XML descriptor as version attributes. Applications are strongly encouraged to enable
optimistic locking for all entities that may be concurrently accessed or that may be merged from a dis-
connected state. Failure to use optimistic locking may lead to inconsistent entity state, lost updates and
other state irregularities. If optimistic locking is not defined as part of the entity state, the application
must bear the burden of maintaining data consistency.

Version Attributes

The Version field or property is used by the persistence provider to perform optimistic locking. It is
accessed and/or set by the persistence provider in the course of performing lifecycle operations on the
entity instance. An entity is automatically enabled for optimistic locking if it has a property or field
mapped with a Version mapping.

An entity may access the state of its version field or property or export a method for use by the applica-
tion to access the version, but must not modify the version valueP®H. With the exception noted in sec-
tion 4.10, only the persistence provider is permitted to set or update the value of the version attribute in
the object.

The version attribute is updated by the persistence provider runtime when the object is written to the
database. All non-relationship fields and properties and all relationships owned by the entity are
included in version checks(*>],

The persistence provider's implementation of the merge operation must examine the version attribute
when an entity is being merged and throw an OptimisticLockException if it is discovered that
the object being merged is a stale copy of the entity—i.e. that the entity has been updated since the
entity became detached. Depending on the implementation strategy used, it is possible that this excep-
tion may not be thrown until £1ush is called or commit time, whichever happens first.

The persistence provider runtime is required to use only the version attribute when performing optimis-
tic lock checking. Persistence provider implementations may provide additional mechanisms beside
version attributes to enable optimistic lock checking. However, support for such mechanisms is not
required of an implementation of this speciﬁcation.[3 6]

[34] Bulk update statements, however, are permitted to set the value of version attributes. See section 4.10.

[35] This includes owned relationships maintained in join tables.

[36] Such additional mechanisms may be standardized by a future release of this specification.

7/17/17

90 JSR-338 Maintenance Release

Oracle

Locking and Concurrency Java Persistence 2.2, Maintenance Release Entity Operations

3.4.3

If only some entities contain version attributes, the persistence provider runtime is required to check
those entities for which version attributes have been specified. The consistency of the object graph is
not guaranteed, but the absence of version attributes on some of the entities will not stop operations
from completing.

Pessimistic Locking

While optimistic locking is typically appropriate in dealing with moderate contention among concurrent
transactions, in some applications it may be useful to immediately obtain long-term database locks for
selected entities because of the often late failure of optimistic transactions. Such immediately obtained
long-term database locks are referred to here as “pessimistic” locks.>]

Pessimistic locking guarantees that once a transaction has obtained a pessimistic lock on an entity
instance:

* o other transaction (whether a transaction of an application using the Java Persistence API or
any other transaction using the underlying resource) may successfully modify or delete that
instance until the transaction holding the lock has ended.

¢ if the pessimistic lock is an exclusive lock!*®, that same transaction may modify or delete that
entity instance.

When an entity instance is locked using pessimistic locking, the persistence provider must lock the data-
base row(s) that correspond to the non-collection-valued persistent state of that instance. If a joined
inheritance strategy is used, or if the entity is otherwise mapped to a secondary table, this entails locking
the row(s) for the entity instance in the additional table(s). Entity relationships for which the locked
entity contains the foreign key will also be locked, but not the state of the referenced entities (unless
those entities are explicitly locked). Element collections and relationships for which the entity does not
contain the foreign key (such as relationships that are mapped to join tables or unidirectional
one-to-many relationships for which the target entity contains the foreign key) will not be locked by
default.

Element collections and relationships owned by the entity that are contained in join tables will be
locked if the javax.persistence.lock.scope property is specified with a value of
PessimisticLockScope.EXTENDED. The state of entities referenced by such relationships will
not be locked (unless those entities are explicitly locked). This property may be passed as an argument
to the methods of the EntityManager, Query, and TypedQuery interfaces that allow lock modes
to be specified or used with the NamedQuery annotation.

Locking such a relationship or element collection generally locks only the rows in the join table or col-
lection table for that relationship or collection. This means that phantoms will be possible.

[37]

[38]

Implementations are permitted to use database mechanisms other than locking to achieve the semantic effects described here, for
example, multiversion concurrency control mechanisms.

This is achieved by using a lock with LockModeType.PESSIMISTIC_WRITE or LockModeType PESSIMISTIC_FORCE_IN-
CREMENT as described in section 3.4.4.

JSR-338 Maintenance Release 9] 7/17/17

Oracle

Entity Operations

344

Java Persistence 2.2, Maintenance Release Locking and Concurrency

The values of the javax.persistence.lock.scope property are defined by the Pessimis-
ticLockScope enum.

package Jjavax.persistence;

public enum PessimisticLockScope {
NORMAL,
EXTENDED

}

This specification does not define the mechanisms a persistence provider uses to obtain database locks,
and a portable application should not rely on how pessimistic locking is achieved on the database.’* In
particular, a persistence provider or the underlying database management system may lock more rows
than the ones selected by the application.

Whenever a pessimistically locked entity containing a version attribute is updated on the database, the
persistence provider must also update (increment) the entity's version column to enable correct interac-

tion with applications using optimistic locking. See sections 3.4.2 and 3.4.4.

Pessimistic locking may be applied to entities that do not contain version attributes. However, in this
case correct interaction with applications using optimistic locking cannot be ensured.

Lock Modes

Lock modes are intended to provide a facility that enables the effect of “repeatable read” semantics for
the items read, whether “optimistically” (as described in section 3.4.4.1) or “pessimistically” (as
described in section 3.4.4.2).

Lock modes can be specified by means of the EntityManager 1ock method, the methods of the Enti-
tyManager, Query, and TypedQuery interfaces that allow lock modes to be specified, and the
NamedQuery annotation.

Lock mode values are defined by the LockModeType enum. Six distinct lock modes are defined. The
lock mode type values READ and WRITE are synonyms of OPTIMISTIC and
OPTIMISTIC FORCE INCREMENT respectively.[40] The latter are to be preferred for new applica-
tions.

[39] For example, a persistence provider may use an underlying database platform's SELECT FOR UPDATE statements to implement

pessimistic locking if that construct provides appropriate semantics, or the provider may use an isolation level of repeatable read.

[40] The lock mode type NONE may be specified as a value of lock mode arguments and also provides a default value for annota-

tions.

7/17/17

92 JSR-338 Maintenance Release

Oracle

Locking and Concurrency Java Persistence 2.2, Maintenance Release Entity Operations

package Jjavax.persistence;

public enum LockModeType {
READ,
WRITE,
OPTIMISTIC,
OPTIMISTIC FORCE INCREMENT,
PESSIMISTIC READ,
PESSIMISTIC WRITE,
PESSIMISTIC FORCE INCREMENT,
NONE - -

3.44.1 OPTIMISTIC, OPTIMISTIC_FORCE_INCREMENT

The lock modes OPTIMISTIC and OPTIMISTIC FORCE INCREMENT are used for optimistic
locking. The lock mode type values READ and WRITE are synonymous with OPTIMISTIC and
OPTIMISTIC FORCE INCREMENT respectively.

The semantics of requesting locks of type LockModeType.OPTIMISTIC and LockMode-
Type.OPTIMISTIC FORCE INCREMENT are the following.

If transaction T1 calls lock (entity, LockModeType.OPTIMISTIC) on a versioned object, the
entity manager must ensure that neither of the following phenomena can occur:

¢ Pl (Dirty read): Transaction T1 modifies a row. Another transaction T2 then reads that row and
obtains the modified value, before T1 has committed or rolled back. Transaction T2 eventually
commits successfully; it does not matter whether T1 commits or rolls back and whether it does
so before or after T2 commits.

e P2 (Non-repeatable read): Transaction T1 reads a row. Another transaction T2 then modifies or
deletes that row, before T1 has committed. Both transactions eventually commit successfully.

This will generally be achieved by the entity manager acquiring a lock on the underlying database row.
While with optimistic concurrency concurrency, long-term database read locks are typically not
obtained immediately, a compliant implementation is permitted to obtain an immediate lock (so long as
it is retained until commit completes). If the lock is deferred until commit time, it must be retained until
the commit completes. Any implementation that supports repeatable reads in a way that prevents the
above phenomena is permissible.

The persistence implementation is not required to support calling lock (entity, LockMode-
Type.OPTIMISTIC) on a non-versioned object. When it cannot support such a lock call, it must
throw the PersistenceException. When supported, whether for versioned or non-versioned
objects, LockModeType .OPTIMISTIC must always prevent the phenomena P1 and P2. Applica-
tions that call lock (entity, LockModeType.OPTIMISTIC) on non-versioned objects will not
be portable.

JSR-338 Maintenance Release 93 7/17/17

Oracle

Entity Operations

3.4.4.2

Java Persistence 2.2, Maintenance Release Locking and Concurrency

If transaction T1 calls lock (entity, LockModeType.OPTIMISTIC FORCE INCREMENT)
on a versioned object, the entity manager must avoid the phenomena P1 and P2 (as with LockMode-
Type.OPTIMISTIC) and must also force an update (increment) to the entity's version column. A
forced version update may be performed immediately, or may be deferred until a flush or commit. If an
entity is removed before a deferred version update was to have been applied, the forced version update
is omitted.

The persistence implementation is not required to support calling lock (entity, LockMode-
Type.OPTIMISTIC FORCE INCREMENT) on a non-versioned object. When it cannot support
such a lock call, it must throw the PersistenceException. When supported, whether for ver-
sioned or non-versioned objects, LockModeType.OPTIMISTIC FORCE INCREMENT must
always prevent the phenomena P1 and P2. For non-versioned objects, whether or not LockMode-
Type.OPTIMISTIC FORCE INCREMENT has any additional behavior is vendor-specific. Applica-
tions that call lock (entity, LockModeType .OPTIMISTIC FORCE INCREMENT) on
non-versioned objects will not be portable.

For versioned objects, it is permissible for an implementation to use LockMode-
Type.OPTIMISTIC FORCE INCREMENT where LockModeType . OPTIMISTIC was requested,
but not vice versa.

If a versioned object is otherwise updated or removed, then the implementation must ensure that the
requirements of LockModeType .OPTIMISTIC FORCE INCREMENT are met, even if no explicit
call to EntityManager.lock was made.

For portability, an application should not depend on vendor-specific hints or configuration to ensure
repeatable read for objects that are not updated or removed via any mechanism other than the use of ver-
sion attributes and the EntityManager 1ock method. However, it should be noted that if an implemen-
tation has acquired up-front pessimistic locks on some database rows, then it is free to ignore
lock(entity, LockModeType.OPTIMISTIC) calls on the entity objects representing those
rOWS.

PESSIMISTIC_READ, PESSIMISTIC_WRITE,
PESSIMISTIC_FORCE_INCREMENT

The lock modes PESSIMISTIC_ READ, PESSIMISTIC WRITE, and
PESSIMISTIC FORCE_ INCREMENT are used to immediately obtain long-term database locks.[41]

The semantics of requesting locks of type LockModeType.PESSIMISTIC READ, LockMode-
Type.PESSIMISTIC WRITE, and LockModeType. PESSIMISTIC FORCE INCREMENT are
the following.

If transaction T1 calls lock(entity, LockModeType.PESSIMISTIC READ) or
lock (entity, LockModeType.PESSIMISTIC WRITE) on an object, the entity manager must
ensure that neither of the following phenomena can occur:

[41]

Databases concurrency control mechanisms that provide comparable semantics, e.g., multiversion concurrency control, can be
used by the provider.

7/17/17

94 JSR-338 Maintenance Release

Oracle

Locking and Concurrency Java Persistence 2.2, Maintenance Release Entity Operations

e P1 (Dirty read): Transaction T1 modifies a row. Another transaction T2 then reads that row and
obtains the modified value, before T1 has committed or rolled back.

e P2 (Non-repeatable read): Transaction T1 reads a row. Another transaction T2 then modifies or
deletes that row, before T1 has committed or rolled back.

Any such lock must be obtained immediately and retained until transaction T1 completes (commits or
rolls back).

Avoidance of phenomena P1 and P2 is generally achieved by the entity manager acquiring a long-term
lock on the underlying database row(s). Any implementation that supports pessimistic repeatable reads
as described above is permissible.

A lock with LockModeType . PESSIMISTIC WRITE can be obtained on an entity instance
to force serialization among transactions attempting to update the entity data. A lock with
LockModeType.PESSIMISTIC READ can be used to query data using repeatable-read
semantics without the need to reread the data at the end of the transaction to obtain a lock, and
without blocking other transactions reading the data. A lock with LockMode-
Type.PESSIMISTIC WRITE can be used when querying data and there is a high likeli-
hood of deadlock or update failure among concurrent updating transactions.

The persistence implementation must support calling lock (entity, LockModeType.PESSI-
MISTIC READ) and lock (entity, LockModeType.PESSIMISTIC WRITE)on a non-ver-
sioned entity as well as on a versioned entity.

It is permissible for an implementation to use LockModeType.PESSIMISTIC WRITE where
LockModeType.PESSIMISTIC READ was requested, but not vice versa.

When the lock cannot be obtained, and the database locking failure results in transaction-level rollback,
the provider must throw the PessimisticLockException and ensure that the JTA transaction or
EntityTransaction has been marked for rollback.

When the lock cannot be obtained, and the database locking failure results in only statement-level roll-

back, the provider must throw the LockTimeoutException (and must not mark the transaction for
rollback).

When an application locks an entity with LockModeType . PESSIMISTIC READ and later updates
that entity, the lock must be converted to an exclusive lock when the entity is flushed to the databasel*?].
If the lock conversion fails, and the database locking failure results in transaction-level rollback, the
provider must throw the PessimisticLockException and ensure that the JTA transaction or
EntityTransaction has been marked for rollback. When the lock conversion fails, and the database lock-
ing failure results in only statement-level rollback, the provider must throw the LockTimeoutEx-
ception (and must not mark the transaction for rollback).

[42] The persistence provider is not required to flush the entity to the database immediately.

JSR-338 Maintenance Release 95 7/17/17

Oracle

Entity Operations

3.44.3

Java Persistence 2.2, Maintenance Release Locking and Concurrency

When lock(entity, LockModeType.PESSIMISTIC READ), lock(entity, Lock-
ModeType.PESSIMISTIC WRITE), or lock(entity, LockModeType.PESSIMISTIC -
FORCE_INCREMENT) is invoked on a versioned entity that is already in the persistence context, the
provider must also perform optimistic version checks when obtaining the lock. An Optimisti-
cLockException must be thrown if the version checks fail. Depending on the implementation strat-
egy used by the provider, it is possible that this exception may not be thrown until flush is called or
commit time, whichever occurs first.

If transaction T1 calls lock (entity, LockModeType.PESSIMISTIC FORCE INCREMENT)
on a versioned object, the entity manager must avoid the phenomenon P1 and P2 (as with LockMode-
Type.PESSIMISTIC READ and LockModeType.PESSIMISTIC WRITE) and must also force
an update (increment) to the entity's version column.

The persistence implementation is not required to support calling lock (entity, LockMode-
Type.PESSIMISTIC FORCE INCREMENT) on a non-versioned object. When it cannot support
such a lock call, it must throw the PersistenceException. When supported, whether for ver-
sioned or non-versioned objects, LockModeType.PESSIMISTIC FORCE INCREMENT must
always prevent the phenomena P1 and P2. For non-versioned objects, whether or not LockMode-
Type.PESSIMISTIC FORCE INCREMENT has any additional behavior is vendor-specific. Appli-
cations that call lock (entity, LockModeType.PESSIMISTIC FORCE INCREMENT) on
non-versioned objects will not be portable.

For versioned objects, it is permissible for an implementation to use LockMode-
Type.PESSIMISTIC FORCE INCREMENT where LockModeType. PESSIMISTIC READ or
LockModeType.PESSIMISTIC WRITE was requested, but not vice versa.

If a versioned object locked with LockModeType.PESSIMISTIC READ or LockMode-
Type.PESSIMISTIC WRITE is updated, then the implementation must ensure that the requirements
of LockModeType.PESSIMIST IC _FORCE INCREMENT are met.

Lock Mode Properties and Uses
The following property is defined by this specification for use in pessimistic locking, as described in
section 3.4.3:

javax.persistence.lock.scope
This property may be used with the methods of the EntityManager interface that allow lock modes
to be specified, the Query and TypedQuery setLockMode methods, and the NamedQuery anno-
tation. When specified, this property must be observed. The provider is permitted to lock more (but not
fewer) rows than requested.

The following hint is defined by this specification for use in pessimistic locking.

javax.persistence.lock.timeout // time in milliseconds

7/17/17

96 JSR-338 Maintenance Release

Oracle

Locking and Concurrency Java Persistence 2.2, Maintenance Release Entity Operations

3.4.5

This hint may be used with the methods of the Ent it yManager interface that allow lock modes to be
specified, the Query.setLockMode method and the NamedQuery annotation. It may also be
passed as a property to the Persistence.createEntityManagerFactory method and used
in the properties element of the persistence.xml file. See sections 3.1.1, 3.10.9, 8.2.1.9, 9.7,
and 10.4.1. When used in the createEntityManagerFactory method, the persis-
tence.xml file, and the NamedQuery annotation, the timeout hint serves as a default value which
can be selectively overridden by use in the methods of the EntityManager, Query, and
TypedQuery interfaces as specified above. When this hint is not specified, database timeout values
are assumed to apply.

A timeout value of 0 is used to specify “no wait” locking.

Portable applications should not rely on this hint. Depending on the database in use and the locking
mechanisms used by the persistence provider, the hint may or may not be observed.

Vendors are permitted to support the use of additional, vendor-specific locking hints. Vendor-specific
hints must not use the javax.persistence namespace. Vendor-specific hints must be ignored if

they are not understood.

If the same property or hint is specified more than once, the following order of overriding applies, in
order of decreasing precedence:

e argument to method of EntityManager, Query, or TypedQuery interface
e specification to NamedQuery (annotation or XML)
e argument to createEntityManagerFactory method

e specification in persistence.xml

OptimisticLockException

Provider implementations may defer writing to the database until the end of the transaction, when con-
sistent with the lock mode and flush mode settings in effect. In this case, an optimistic lock check may
not occur until commit time, and the OptimisticLockException may be thrown in the “before
completion” phase of the commit. If the OptimisticLockException must be caught or handled
by the application, the £1ush method should be used by the application to force the database writes to
occur. This will allow the application to catch and handle optimistic lock exceptions.

The OptimisticLockException provides an API to return the object that caused the exception to
be thrown. The object reference is not guaranteed to be present every time the exception is thrown but
should be provided whenever the persistence provider can supply it. Applications cannot rely upon this
object being available.

In some cases an OptimisticLockException will be thrown and wrapped by another exception,
such as a RemoteException, when VM boundaries are crossed. Entities that may be referenced in

wrapped exceptions should implement Serializable so that marshalling will not fail.

An OptimisticLockException always causes the transaction to be marked for rollback.

JSR-338 Maintenance Release 97 7/17/17

Oracle

Entity Operations

3.5

Java Persistence 2.2, Maintenance Release Entity Listeners and Callback Methods

Refreshing objects or reloading objects in a new transaction context and then retrying the transaction is
a potential response to an OptimisticLockException.

Entity Listeners and Callback Methods

3.5.1

A method may be designated as a lifecycle callback method to receive notification of entity lifecycle
events. A lifecycle callback method can be defined on an entity class, a mapped superclass, or an entity
listener class associated with an entity or mapped superclass. An entity listener class is a class whose
methods are invoked in response to lifecycle events on an entity. Any number of entity listener classes
can be defined for an entity class or mapped superclass.

Default entity listeners—entity listener classes whose callback methods apply to all entities in the per-
sistence unit—can be specified by means of the XML descriptor.

Lifecycle callback methods and entity listener classes are defined by means of metadata annotations or
the XML descriptor. When annotations are used, one or more entity listener classes are denoted using
the EntityListeners annotation on the entity class or mapped superclass. If multiple entity listen-
ers are defined, the order in which they are invoked is determined by the order in which they are speci-
fied in the EntityListeners annotation. The XML descriptor may be used as an alternative to
specify the invocation order of entity listeners or to override the order specified in metadata annotations.

Any subset or combination of annotations may be specified on an entity class, mapped superclass, or
listener class. A single class must not have more than one lifecycle callback method for the same lifecy-
cle event. The same method may be used for multiple callback events.

Multiple entity classes and mapped superclasses in an inheritance hierarchy may define listener classes

and/or lifecycle callback methods directly on the class. Section 3.5.5 describes the rules that apply to
method invocation order in this case.

Entity Listeners

The entity listener class must have a public no-arg constructor.

Entity listener classes in Java EE environments support dependency injection through the Contexts and
Dependency Injection API (CDI) [7] when CDI is enabled 3], An entity listener class that makes use
of CDI injection may also define lifecycle callback methods annotated with the PostConstruct and
PreDestroy annotations. These methods will be invoked after injection has taken place and before
the entity listener instance is destroyed respectively.

The persistence provider is responsible for using the CDI SPI to create instances of the entity listener
class; to perform injection upon such instances; to invoke their PostConstruct and PreDestroy
methods, if any; and to dispose of the entity listener instances.

[43] CDI is enabled by default in Java EE. See the Java EE specification [6].

7/17/17

98 JSR-338 Maintenance Release

Oracle

Entity Listeners and Callback Methods Java Persistence 2.2, Maintenance Release Entity Operations

The persistence provider is only required to support CDI injection into entity listeners in Java EE con-
tainer environments**]. If the CDI is not enabled, the persistence provider must not invoke entity lis-
teners that depend upon CDI injection.

An entity listener is a noncontextual object. In supporting injection into entity listeners, the persistence
provider must behave as if it carries out the following steps involving the use of the CDI SPI. (See [7]).

e (Obtain a BeanManager instance. (See section 9.1.)

e C(Create an AnnotatedType instance for the entity listener class.

e C(Create an InjectionTarget instance for the annotated type.

e C(Create a CreationalContext.

¢ Instantiate the listener by calling the InjectionTarget produce method.

¢ Inject the listener instance by calling the InjectionTarget inject method on the
instance.

e Invoke the PostConstruct callback, if any, by calling the InjectionTarget post-
Construct method on the instance.

When the listener instance is to be destroyed, the persistence provider must behave as if it carries out the
following steps.

e (allthe InjectionTarget preDestroy method on the instance.
e (allthe InjectionTarget dispose method on the instance
e (allthe CreationalContext release method.

Persistence providers may optimize the steps above, e.g. by avoiding calls to the actual CDI SPI and
relying on container-specific interfaces instead, as long as the outcome is the same.

Entity listeners that do not make use of CDI injection are stateless. The lifecycle of such entity listeners
is unspecified.

When invoked from within a Java EE environment, the callback listeners for an entity share the enter-
prise naming context of the invoking component, and the entity callback methods are invoked in the
transaction and security contexts of the calling component at the time at which the callback method is
invoked. [43]

[44]

[45]

The persistence provider may support CDI injection into entity listeners in other environments in which the BeanManager is
available.

For example, if a transaction commit occurs as a result of the normal termination of a session bean business method with transac-
tion attribute RequiresNew, the PostPersist and PostRemove callbacks are executed in the naming context, the transac-
tion context, and the security context of that component.

JSR-338 Maintenance Release 99 7/17/17

Oracle

Entity Operations Java Persistence 2.2, Maintenance Release Entity Listeners and Callback Methods

3.5.2 Lifecycle Callback Methods

Entity lifecycle callback methods can be defined on an entity listener class and/or directly on an entity
class or mapped superclass.

Lifecycle callback methods are annotated with annotations designating the callback events for which
they are invoked or are mapped to the callback event using the XML descriptor.

The annotations (and XML elements) used for callback methods on the entity class or mapped super-
class and for callback methods on the entity listener class are the same. The signatures of individual
methods, however, differ.

Callback methods defined on an entity class or mapped superclass have the following signature:

void <METHOD> ()

Callback methods defined on an entity listener class have the following signature:

void <METHOD> (Object)

The Object argument is the entity instance for which the callback method is invoked. It may be
declared as the actual entity type.

The callback methods can have public, private, protected, or package level access, but must not be
staticor final.

The following annotations designate lifecycle event callback methods of the corresponding types.
® PrePersist
® PostPersist
® PreRemove
® PostRemove
® PreUpdate
® PostUpdate

® PostLoad

The following rules apply to lifecycle callback methods:
¢ Lifecycle callback methods may throw unchecked/runtime exceptions. A runtime exception
thrown by a callback method that executes within a transaction causes that transaction to be

marked for rollback if the persistence context is joined to the transaction.

e Lifecycle callbacks can invoke INDI, JDBC, JMS, and enterprise beans.

71717 100 JSR-338 Maintenance Release

Oracle

Entity Listeners and Callback Methods Java Persistence 2.2, Maintenance Release Entity Operations

e In general, the lifecycle method of a portable application should not invoke EntityMan-
ager or query operations, access other entity instances, or modify relationships within the
same persistence contextl401.[47] A lifecycle callback method may modify the non-relationship
state of the entity on which it is invoked.

3.5.3 Semantics of the Life Cycle Callback Methods for Entities

The PrePersist and PreRemove callback methods are invoked for a given entity before the
respective EntityManager persist and remove operations for that entity are executed. For entities to
which the merge operation has been applied and causes the creation of newly managed instances, the
PrePersist callback methods will be invoked for the managed instance after the entity state has
been copied to it. These PrePersist and PreRemove callbacks will also be invoked on all entities
to which these operations are cascaded. The PrePersist and PreRemove methods will always be
invoked as part of the synchronous persist, merge, and remove operations.

The PostPersist and PostRemove callback methods are invoked for an entity after the entity has
been made persistent or removed. These callbacks will also be invoked on all entities to which these
operations are cascaded. The PostPersist and PostRemove methods will be invoked after the
database insert and delete operations respectively. These database operations may occur directly after
the persist, merge, or remove operations have been invoked or they may occur directly after a flush
operation has occurred (which may be at the end of the transaction). Generated primary key values are
available in the PostPersist method.

The PreUpdate and PostUpdate callbacks occur before and after the database update operations to
entity data respectively. These database operations may occur at the time the entity state is updated or
they may occur at the time state is flushed to the database (which may be at the end of the transaction).

Note that it is implementation-dependent as to whether PreUpdate and PostUpdate call-
backs occur when an entity is persisted and subsequently modified in a single transaction or
when an entity is modified and subsequently removed within a single transaction. Portable
applications should not rely on such behavior.

The PostLoad method for an entity is invoked after the entity has been loaded into the current persis-
tence context from the database or after the refresh operation has been applied to it. The PostLoad
method is invoked before a query result is returned or accessed or before an association is traversed.

It is implementation-dependent as to whether callback methods are invoked before or after the cascad-
ing of the lifecycle events to related entities. Applications should not depend on this ordering.

[46] Note that this caution applies also to the actions of objects that might be injected into an entity listener.
[47] The semantics of such operations may be standardized in a future release of this specification.

JSR-338 Maintenance Release 101 7/17/17

Oracle

Entity Operations

Java Persistence 2.2, Maintenance Release Entity Listeners and Callback Methods

3.5.4 Example

3.5.5

@Entity
@EntityListeners (com.acme.AlertMonitor.class)
public class Account {

Long accountId;
Integer balance;
boolean preferred;

@Id
public Long getAccountId() { ... }

public Integer getBalance() { ... }

@Transient // because status depends upon non-persistent context
public boolean isPreferred() { ... }

public void deposit (Integer amount) { ... }

public Integer withdraw (Integer amount) throws NSFException {... }

@PrePersist
protected void validateCreate () {
if (getBalance () < MIN REQUIRED BALANCE)
throw new AccountException ("Insufficient balance to open an
account") ;

}

@PostLoad
protected void adjustPreferredStatus () {

preferred =
(getBalance () >= AccountManager.getPreferredStatu-

sLevel ());

}
}

public class AlertMonitor

@PostPersist
public void newAccountAlert (Account acct) {
Alerts.sendMarketingInfo(acct.getAccountId (), acct.getBal-
ance ());
}
}

Multiple Lifecycle Callback Methods for an Entity Lifecycle Event

If multiple callback methods are defined for an entity lifecycle event, the ordering of the invocation of
these methods is as follows.

Default listeners, if any, are invoked first, in the order specified in the XML descriptor. Default listeners
apply to all entities in the persistence unit, unless explicitly excluded by means of the ExcludeDe-
faultListeners annotation or exclude-default-listeners XML element.

7/17/17

102 JSR-338 Maintenance Release

Oracle

Entity Listeners and Callback Methods Java Persistence 2.2, Maintenance Release Entity Operations

3.5.6

The lifecycle callback methods defined on the entity listener classes for an entity class or mapped super-
class are invoked in the same order as the specification of the entity listener classes in the Enti-
tyListeners annotation.

If multiple classes in an inheritance hierarchy—entity classes and/or mapped superclasses—define
entity listeners, the listeners defined for a superclass are invoked before the listeners defined for its sub-
classes in this order. The ExcludeSuperclassListeners annotation or exclude—-super-—
class-listeners XML element may be applied to an entity class or mapped superclass to exclude
the invocation of the listeners defined by the entity listener classes for the superclasses of the entity or
mapped superclass. The excluded listeners are excluded from the class to which the ExcludeSuper-
classListeners annotation or element has been specified and its subclasses.[*8] The Exclude-
SuperclassListeners annotation (or exclude-superclass—-listeners XML element)
does not cause default entity listeners to be excluded from invocation.

If a lifecycle callback method for the same lifecycle event is also specified on the entity class and/or one
or more of its entity or mapped superclasses, the callback methods on the entity class and/or super-
classes are invoked after the other lifecycle callback methods, most general superclass first. A class is
permitted to override an inherited callback method of the same callback type, and in this case, the over-
ridden method is not invoked.[’]

Callback methods are invoked by the persistence provider runtime in the order specified. If the callback
method execution terminates normally, the persistence provider runtime then invokes the next callback
method, if any.

The XML descriptor may be used to override the lifecycle callback method invocation order specified

in annotations.

Example

There are several entity classes and listeners for animals:

@Entity

public class Animal
@PostPersist
protected void postPersistAnimal () {
}

}

@Entity

@EntityListeners (PetListener.class)
public class Pet extends Animal {

}

(48]

[49]

Excluded listeners may be reintroduced on an entity class by listing them explicitly in the EntityListeners annotation or
XML entity-listeners element.

If a method overrides an inherited callback method but specifies a different lifecycle event or is not a lifecycle callback method,
the overridden method will not be invoked.

JSR-338 Maintenance Release 103 7/17/17

Oracle

Entity Operations

Java Persistence 2.2, Maintenance Release Entity Listeners and Callback Methods

@Entity
@EntityListeners ({CatListener.class, CatListener2.class})
public class Cat extends Pet {

}

public class PetListener {
@PostPersist
protected void postPersistPetListenerMethod (Object pet) {

}
}

public class CatListener {
@PostPersist
protected void postPersistCatListenerMethod (Object cat) {

}
}

public class CatListener2 {
@PostPersist
protected void postPersistCatListener2Method (Object cat) {

}
}

Ifa PostPersist event occurs on an instance of Cat, the following methods are called in order:

postPersistPetListenerMethod
postPersistCatListenerMethod
postPersistCatListener2Method
postPersistAnimal

Assume that SiameseCat is defined as a subclass of Cat:

@EntityListeners (SiameseCatListener.class)
@Entity
public class SiameseCat extends Cat {

@PostPersist
protected void postPersistSiameseCat () {

}
}

public class SiameseCatListener {

@PostPersist
protected void postPersistSiameseCatListenerMethod (Object cat) {

}

7/17/17

104 JSR-338 Maintenance Release

Oracle

Entity Listeners and Callback Methods Java Persistence 2.2, Maintenance Release Entity Operations

3.5.7

Ifa PostPersist event occurs on an instance of SiameseCat, the following methods are called in
order:

postPersistPetListenerMethod
postPersistCatListenerMethod
postPersistCatListener2Method
postPersistSiameseCatListenerMethod
postPersistAnimal
postPersistSiameseCat

Assume the definition of SiameseCat were instead:

@EntityListeners (SiameseCatListener.class)
@Entity
public class SiameseCat extends Cat {

@PostPersist
protected void postPersistAnimal () {

}
}

In this case, the following methods would be called in order, where postPersistAnimal is the
PostPersist method defined in the SiameseCat class:

postPersistPetListenerMethod
postPersistCatListenerMethod
postPersistCatListener2Method
postPersistSiameseCatlListenerMethod
postPersistAnimal

Exceptions

3.5.8

Lifecycle callback methods may throw runtime exceptions. A runtime exception thrown by a callback
method that executes within a transaction causes that transaction to be marked for rollback if the persis-
tence context is joined to the transaction. No further lifecycle callback methods will be invoked after a
runtime exception is thrown.

Specification of Callback Listener Classes and Lifecycle Methods in the XML

3.5.8.1

Descriptor

The XML descriptor can be used as an alternative to metadata annotations to specify entity listener
classes and their binding to entities or to override the invocation order of lifecycle callback methods as
specified in annotations.

Specification of Callback Listeners

The entity-1listener XML descriptor element is used to specify the lifecycle listener methods of
an entity listener class. The lifecycle listener methods are specified by using the pre-persist,
post-persist, pre-remove, post-remove, pre-update, post-update, and/or
post-load elements.

JSR-338 Maintenance Release 105 7/17/17

Oracle

Entity Operations

3.5.8.2

3.6

Java Persistence 2.2, Maintenance Release Bean Validation

An entity listener class can define multiple callback methods. However, at most one method of an entity
listener class can be designated as a pre-persist method, post-persist method, pre-remove method,
post-remove method, pre-update method, post-update method, and/or post-load method, regardless of
whether the XML descriptor is used to define entity listeners or whether some combination of annota-
tions and XML descriptor elements is used.

Specification of the Binding of Entity Listener Classes to Entities
The entity-1listeners subelement of the persistence-unit-defaults element is used to
specify the default entity listeners for the persistence unit.

The entity-listeners subelement of the entity or mapped-superclass element is used to
specify the entity listener classes for the respective entity or mapped superclass and its subclasses.

The binding of entity listeners to entity classes is additive. The entity listener classes bound to the
superclasses of an entity or mapped superclass are applied to it as well.

The exclude-superclass-listeners element specifies that the listener methods for super-
classes are not to be invoked for an entity class (or mapped superclass) and its subclasses.

The exclude-default-listeners element specifies that default entity listeners are not to be
invoked for an entity class (or mapped superclass) and its subclasses.

Explicitly listing an excluded default or superclass listener for a given entity class or mapped superclass
causes it to be applied to that entity or mapped superclass and its subclasses.

In the case of multiple callback methods for a single lifecycle event, the invocation order rules
described in section 3.5.5 apply.

Bean Validation

This specification defines support for use of Bean Validation[5] within Java Persistence applications.

Managed classes (entities, mapped superclasses, and embeddable classes) may be configured to include
Bean Validation constraints.

Automatic validation using these constraints is achieved by specifying that Java Persistence delegate
validation to the Bean Validation implementation upon the pre-persist, pre-update, and pre-remove
entity lifecycle events described in Section 3.5.3.

Validation can also be achieved by the application calling the validate method of a Validator
instance upon an instance of a managed class, as described in the Bean Validation specification [5].

7/17/17

106 JSR-338 Maintenance Release

Oracle

Bean Validation Java Persistence 2.2, Maintenance Release Entity Operations

3.6.1 Automatic Validation Upon Lifecycle Events

This specification supports the use of bean validation for the automatic validation of entities upon the
pre-persist, pre-update, and pre-remove lifecycle validation events. These lifecycle validation events
occur immediately after the point at which all the PrePersist, PreUpdate, and PreRemove life-
cycle callback method invocations respectively have been completed, or immediately after the point at
which such lifecycle callback methods would have been completed (in the event that such callback
methods are not present).

In the case where an entity is persisted and subsequently modified in a single transaction or
when an entity is modified and subsequently removed in a single transaction, it is implementa-
tion dependent as to whether the pre-update validation event occurs. Portable applications
should not rely on this behavior.

3.6.1.1 Enabling Automatic Validation

The validation-mode element of the persistence.xml file determines whether the automatic
lifecycle event validation is in effect. The values of the validation-mode element are AUTO,
CALLBACK, NONE. The default validation mode is AUTO.

If the application creates the entity manager factory using the Persistence.createEntityMan-
agerFactory method, the validation mode can be specified using the javax.persis-
tence.validation.mode map key, which will override the value specified (or defaulted) in the
persistence.xmnl file. The map values for this key are "auto", "callback", "none".

If the auto validation mode is specified by the validation-mode element or the javax.persis-
tence.validation.mode property, or if neither the validation-mode element nor the
javax.persistence.validation.mode property is specified, and a Bean Validation provider
is present in the environment, the persistence provider must perform the automatic validation of entities
as described in section 3.6.1.2. If no Bean Validation provider is present in the environment, no lifecy-
cle event validation takes place.

If the callback validation mode is specified by the validation-mode element or the javax.per-
sistence.validation.mode property, the persistence provider must perform the lifecycle event
validation as described in section 3.6.1.2. It is an error if there is no Bean Validation provider present in
the environment, and the provider must throw the PersistenceException if the javax.per-
sistence.validation.mode property value "callback" has been passed to the Persis—
tence.createEntityManagerFactory method.

If the none validation mode is specified by the validation-mode element or the javax.per-
sistence.validation.mode property, the persistence provider must not perform lifecycle event
validation.

3.6.1.2 Requirements for Automatic Validation upon Lifecycle Events

For each event type, a list of groups is targeted for validation. By default, the default Bean Validation
group (the group Default) will be validated upon the pre-persist and pre-update lifecycle validation
events, and no group will be validated upon the pre-remove event.

JSR-338 Maintenance Release 107 7/17/17

Oracle

Entity Operations

3.6.2

Java Persistence 2.2, Maintenance Release Bean Validation

This default validation behavior can be overridden by specifying the target groups using the following
validation properties in the persistence.xml file or by passing these properties in the configura-
tion of the entity manager factory through the createEntityManagerFactory method:

® javax.persistence.validation.group.pre-persist
® javax.persistence.validation.group.pre-update
® javax.persistence.validation.group.pre-remove

The value of a validation property must be a list of the targeted groups. A targeted group must be spec-
ified by its fully qualified class name. Names must be separated by a comma.

When one of the above events occurs for an entity, the persistence provider must validate that entity by
obtaining a Validator instance from the validator factory in use (see section 3.6.2) and invoking its
validate method with the targeted groups. If the list of targeted groups is empty, no validation is
performed. If the set of ConstraintViolation objects returned by the validate method is not
empty, the persistence provider must throw the javax.validation.ConstraintViolation-
Exception containing a reference to the returned set of ConstraintViolation objects, and
must mark the transaction for rollback if the persistence context is joined to the transaction.

The validator instance that is used for automatic validation upon lifecycle events must use a Travers-
ableResolver that has the following behavior:

e Attributes that have not been loaded must not be loaded.
¢ Validation cascade (@Valid) must not occur for entity associations (single- or multi-valued).

These requirements guarantee that no unloaded attribute or association will be loaded by side effect and
that no entity will be validated more than once during a given flush cycle.

Embeddable attributes must be validated only if the Va1l id annotation has been specified on them.
It is the responsibility of the persistence provider to pass an instance implementing the javax.vali-
dation.TraversableResolver interface to the Bean Validation provider by calling Valida-

torFactory.usingContext () .traversableResolver (tr) .getValidator (), where
tr is the resolver having the behavior described above.

Providing the ValidatorFactory

In Java EE environments, a ValidatorFactory instance is made available by the Java EE con-
tainer. The container is responsible for passing this validator factory to the persistence provider via the
map that is passed as an argument to the createContainerEntityManagerFactory call. The
map key used by the container must be the standard property name javax.persistence.vali-
dation.factory.

7/17/17

108 JSR-338 Maintenance Release

Oracle

Entity Graphs

3.7

Java Persistence 2.2, Maintenance Release Entity Operations

In Java SE environments, the application can pass the ValidatorFactory instance via the map that
is passed as an argument to the Persistence.createEntityManagerFactory call. The map
key used must be the standard property name javax.persistence.validation.factory. If
no ValidatorFactory instance is provided by the application, and if a Bean Validation provider is
present in the classpath, the persistence provider must instantiate the ValidatorFactory using the
default bootstrapping approach defined by the Bean Validation specification [5], namely Valida-
tion.buildDefaultValidatorFactory ().

Entity Graphs

An entity graph is a template that captures the path and boundaries for an operation or query. It is
defined in the form of metadata or an object created by the dynamic EntityGraph API.

Entity graphs are used in the specification of “fetch plans” for query or £ind operations.

The EntityGraph, AttributeNode, and Subgraph interfaces are used to dynamically construct
entity graphs. The annotations to statically define entity graphs, namely NamedEntityGraph,
NamedAttributeNode, and NamedSubgraph, are described in Section 10.3. The
named-entity-graph XML element and its subelements may be used to override these annota-
tions or to define additional named entity graphs.

The semantics of entity graphs with regard to find and query operations are described in section 3.7.4.

JSR-338 Maintenance Release 109 7/17/17

Oracle

Entity Operations Java Persistence 2.2, Maintenance Release Entity Graphs

3.7.1 EntityGraph Interface

package Jjavax.persistence;

import Jjavax.persistence.metamodel.Attribute;
import Jjava.util.List;

/**

* This type represents the root of an entity graph that will be used
as a template to define the attribute nodes and boundaries of a
graph of entities and entity relationships. The root must be an
entity type.

The methods to add subgraphs implicitly create the corresponding
attribute nodes as well; such attribute nodes should not be
redundantly specified.

X% X ok o X X o

*

@param <T> The type of the root entity.
*/
public interface EntityGraph<T> {

/ *
Return the name of a named EntityGraph (an entity graph
defined by means of the NamedEntityGraph annotation,
XML descriptor element, or added by means of the
addNamedEntityGraph method. Returns null if the EntityGraph
* is not a named EntityGraph.
*
/
public String getName () ;

X % X o %

/**

* Add one or more attribute nodes to the entity graph.

* @param attributeName name of the attribute
* @throws IllegalArgumentException if the attribute is not an
* attribute of this entity.
* @throws IllegalStateException if the EntityGraph has been
* statically defined
*/
public void addAttributeNodes (String ... attributeName) ;
/**

* Add one or more attribute nodes to the entity graph.
* (@param attribute attribute
* @throws IllegalStateException if the EntityGraph has been

* statically defined

*/
public void addAttributeNodes (Attribute<T, ?> ... attribute);
/**

* Add a node to the graph that corresponds to a managed
type. This allows for construction of multi-node entity graphs
that include related managed types.
@param attribute attribute
@return subgraph for the attribute
@throws IllegalArgumentException if the attribute's target
type is not a managed type
@throws IllegalStateException if the EntityGraph has been
* statically defined
*
/
public <X> Subgraph<X> addSubgraph (Attribute<T, X> attribute);

X% ok b X X X

7/17/17

110 JSR-338 Maintenance Release

Oracle

Entity Graphs

X% >k b X X X ok X X X ot

*

*

Java Persistence 2.2, Maintenance Release Entity Operations

*
Add a node to the graph that corresponds to a managed
type with inheritance. This allows for multiple subclass
subgraphs to be defined for this node of the entity
graph. Subclass subgraphs will automatically include the
specified attributes of superclass subgraphs.
@param attribute attribute
@param type entity subclass
@return subgraph for the attribute
@throws IllegalArgumentException if the attribute's target
type is not a managed type
@throws IllegalStateException if the EntityGraph has been
statically defined
/

public <X> Subgraph<? extends X>
addSubgraph (Attribute<T, X> attribute, Class<? extends X> type);

/

% X ok X X X o % X%

*

*

*
Add a node to the graph that corresponds to a managed
type. This allows for construction of multi-node entity graphs
that include related managed types.
@param attributeName name of the attribute
@return subgraph for the attribute
@throws IllegalArgumentException if the attribute is not an
attribute of this entity.
@throws IllegalArgumentException if the attribute's target
type is not a managed type
@throws IllegalStateException if the EntityGraph has been
statically defined
/

public <X> Subgraph<X> addSubgraph (String attributeName) ;

/*

*

5% Xk b X X X b % X X

*

*

*

Add a node to the graph that corresponds to a managed

type with inheritance. This allows for multiple subclass

subgraphs to be defined for this node of the entity graph.

Subclass subgraphs will automatically include the specified

attributes of superclass subgraphs.

@param attributeName name of the attribute

@param type entity subclass

@return subgraph for the attribute

@throws IllegalArgumentException if the attribute is not an
attribute of this managed type.

@throws IllegalArgumentException if the attribute's target
type is not a managed type

@throws IllegalStateException if this EntityGraph has been
statically defined

/

public <X> Subgraph<X> addSubgraph (String attributeName,

% X ok o X X

Class<X> type);

Add a node to the graph that corresponds to a map key

that is a managed type. This allows for construction of
multi-node entity graphs that include related managed types.
@param attribute attribute

@return subgraph for the key attribute

@throws IllegalArgumentException if the attribute's target

JSR-338 Maintenance Release 111 7/17/17

Oracle

Entity Operations Java Persistence 2.2, Maintenance Release Entity Graphs
* type is not an entity
* @throws IllegalStateException if this EntityGraph has been
* statically defined
*
/
public <X> Subgraph<X> addKeySubgraph (Attribute<T, X> attribute);
/ * *
* Add a node to the graph that corresponds to a map key
* that is a managed type with inheritance. This allows for
* construction of multi-node entity graphs that include related
* managed types. Subclass subgraphs will include the specified
* attributes of superclass subgraphs.
* @param attribute attribute
* (@param type entity subclass
* @return subgraph for the key attribute
* @throws IllegalArgumentException if the attribute's target
* type is not an entity
* @throws IllegalStateException if this EntityGraph has been
* statically defined
*
/
public <X> Subgraph<? extends X>
addKeySubgraph (Attribute<T, X> attribute,
Class<? extends X> type);
/ * %
* Add a node to the graph that corresponds to a map key
* that is a managed type. This allows for construction of
* multi-node entity graphs that include related managed types.
* @param attributeName name of the attribute
* @return subgraph for the key attribute
* @throws IllegalArgumentException if the attribute is not an
* attribute of this entity.
* @throws IllegalArgumentException if the attribute's target
* type is not an entity
* @throws IllegalStateException if this EntityGraph has been
* statically defined
*
/
public <X> Subgraph<X> addKeySubgraph (String attributeName) ;
/ * %
* Add a node to the graph that corresponds to a map key
* that is a managed type with inheritance. This allows for
* construction of multi-node entity graphs that include related
* managed types. Subclass subgraphs will automatically include
* the specified attributes of superclass subgraphs
* (@param attributeName name of the attribute
* (@param type entity subclass
* @return subgraph for the key attribute
* @throws IllegalArgumentException if the attribute is not an
* attribute of this entity.
* @throws IllegalArgumentException if the attribute's target
* type is not a managed type
* @throws IllegalStateException if this EntityGraph has been
* statically defined
*
/
public <X> Subgraph<X> addKeySubgraph (String attributeName,
Class<X> type);
71717 112 JSR-338 Maintenance Release

Oracle

Entity Graphs Java Persistence 2.2, Maintenance Release Entity Operations
/ * *
* Add additional attributes to this entity graph that
* correspond to attributes of subclasses of this EntityGraph's
* entity type. Subclass subgraphs will automatically include
* the specified attributes of superclass subgraphs.
* (@param type entity subclass
* @return subgraph for the subclass
* @throws IllegalArgumentException if the type is not an entity
type
* @throws IllegalStateException if the EntityGraph has been
* statically defined

*/
public <T> Subgraph<? extends T>
addSubclassSubgraph (Class<? extends T> type):;

/**

* Return the attribute nodes of this entity that are included
* in the entity graph.

* @return attribute nodes for the annotated entity type or

* empty list if none have been defined

*

public List<AttributeNode<?>> getAttributeNodes() ;

3.7.2 AttributeNode Interface

package javax.persistence;
import java.util.Map;

/**
* Represents an attribute node of an entity graph.
*
* @param <T> The type of the attribute.
*/
public interface AttributeNode<T> ({

/**
* Return the name of the attribute corresponding to the
* attribute node.
* @return name of the attribute
*/
public String getAttributeName () ;

/**
* Return the Map<Class, Subgraph> of subgraphs associated
* with this attribute node.
* @return Map of subgraphs associated with this attribute node
* or empty Map if none have been defined
*/
public Map<Class, Subgraph> getSubgraphs();

JSR-338 Maintenance Release 113 7/17/17

Oracle

Entity Operations

Java Persistence 2.2, Maintenance Release Entity Graphs

/**
* Return the Map<Class, Subgraph> of subgraphs associated
* with this attribute node's map key.
* @return Map of subgraphs associated with this attribute
* node's map key or empty Map if none have been defined
*/

public Map<Class, Subgraph> getKeySubgraphs () ;

3.7.3 Subgraph Interface

package javax.persistence;

import javax.persistence.metamodel.Attribute;
import java.util.List;

/

b S

*

*/

*

This type represents a subgraph for an attribute node that
corresponds to a Managed Type. Using this class, an entity
subgraph can be embedded within an EntityGraph.

@param <T> The type of the attribute.

public interface Subgraph<T> {

/**
* Add one or more attribute nodes to the entity graph.
* @param attributeName name of the attribute
* @throws IllegalArgumentException if the attribute is not an
* attribute of this managed type.
* @throws IllegalStateException if the EntityGraph has been
* statically defined
*/

public void addAttributeNodes (String ... attributeName) ;

/**

* Add one or more attribute nodes to the entity graph.
* (@param attribute attribute
* @throws IllegalStateException if this EntityGraph has been

* statically defined

*/
public void addAttributeNodes (Attribute<T, ?> ... attribute);
/**

* Add a node to the graph that corresponds to a managed

* type. This allows for construction of multi-node entity
* graphs that include related managed types.
* (@param attribute attribute
* @return subgraph for the attribute
* @throws IllegalArgumentException if the attribute's target
* type is not a managed type
* @throws IllegalStateException if the EntityGraph has been
* statically defined
*
/

public <X> Subgraph<X> addSubgraph (Attribute<T, X> attribute);

7/17/17

114 JSR-338 Maintenance Release

Oracle

Entity Graphs Java Persistence 2.2, Maintenance Release Entity Operations
/ * *
* Add a node to the graph that corresponds to a managed
* type with inheritance. This allows for multiple subclass
* subgraphs to be defined for this node of the entity
* graph. Subclass subgraphs will automatically include the
* gpecified attributes of superclass subgraphs
* @param attribute attribute
* (@param type entity subclass
* @return subgraph for the attribute
* @throws IllegalArgumentException if the attribute's target
* type is not a managed type
*

@throws IllegalStateException if this EntityGraph has been
statically defined

*

*/
public <X> Subgraph<? extends X>
addSubgraph (Attribute<T, X> attribute, Class<? extends X> type);

/**
* Add a node to the graph that corresponds to a managed
* type. This allows for construction of multi-node entity
* graphs that include related managed types.
* @param attributeName name of the attribute
* @return subgraph for the attribute
* @throws IllegalArgumentException if the attribute is not an
* attribute of this managed type.
* @throws IllegalArgumentException if the attribute's target
* type is not a managed type
* @throws IllegalStateException if this EntityGraph has been
* statically defined
*
/
public <X> Subgraph<X> addSubgraph (String attributeName) ;
/**
* Add a node to the graph that corresponds to a managed
* type with inheritance. This allows for multiple subclass
* subgraphs to be defined for this node of the entity
* graph. Subclass subgraphs will automatically include the
* specified attributes of superclass subgraphs
* (@param attributeName name of the attribute
* (@param type entity subclass
* @return subgraph for the attribute
* @throws IllegalArgumentException if the attribute is not
* an attribute of this managed type.
* @throws IllegalArgumentException if the attribute's target
* type is not a managed type
* @throws IllegalStateException if this EntityGraph has been
* statically defined
*
/

public <X> Subgraph<X> addSubgraph (String attributeName,
Class<X> type);

Add a node to the graph that corresponds to a map key

that is a managed type. This allows for construction of
multinode entity graphs that include related managed types.
@param attribute attribute

@return subgraph for the key attribute

@throws IllegalArgumentException if the attribute's target

X% ok b X X X

JSR-338 Maintenance Release 115 7/17/17

Oracle

Entity Operations Java Persistence 2.2, Maintenance Release Entity Graphs
* type i1s not a managed type entity
* @throws IllegalStateException if this EntityGraph has been
* statically defined
*
/
public <X> Subgraph<X> addKeySubgraph (Attribute<T, X> attribute);
/ * *
* Add a node to the graph that corresponds to a map key
* that is a managed type with inheritance. This allows for
* construction of multi-node entity graphs that include related
* managed types. Subclass subgraphs will automatically include
* the specified attributes of superclass subgraphs
* @param attribute attribute
* (@param type entity subclass
* @return subgraph for the attribute
* @throws IllegalArgumentException if the attribute's target
* type i1s not a managed type entity
* @throws IllegalStateException if this EntityGraph has been
* statically defined
*
/
public <X> Subgraph<? extends X>
addKeySubgraph (Attribute<T, X> attribute, Class<? extends X> type);
/ * %
* Add a node to the graph that corresponds to a map key
* that is a managed type. This allows for construction of
* multi-node entity graphs that include related managed types.
* (@param attributeName name of the attribute
* @return subgraph for the key attribute
* @throws IllegalArgumentException if the attribute is not an
* attribute of this entity.
* @throws IllegalArgumentException if the attribute's target
* type is not a managed type
* @throws IllegalStateException if this EntityGraph has been
* statically defined
*
/
public <X> Subgraph<X> addKeySubgraph (String attributeName) ;
/ * %
* Add a node to the graph that corresponds to a map key
* that is a managed type with inheritance. This allows for
* construction of multi-node entity graphs that include related
* managed types. Subclass subgraphs will include the specified
* attributes of superclass subgraphs
* (@param attributeName name of the attribute
* (@param type entity subclass
* @return subgraph for the attribute
* @throws IllegalArgumentException if the attribute is not an
* attribute of this entity.
* @throws IllegalArgumentException if the attribute's target
* type is not a managed type
* @throws IllegalStateException if this EntityGraph has been
* statically defined
*
/
public <X> Subgraph<X> addKeySubgraph (String attributeName,
Class<X> type);
71717 116 JSR-338 Maintenance Release

Oracle

Entity Graphs

3.74

Java Persistence 2.2, Maintenance Release Entity Operations

/**
* Return the attribute nodes corresponding to the attributes of
* this managed type that are included in the subgraph.
* @return list of attribute nodes included in the subgraph
* or empty list if none have been defined
*/
public List<AttributeNode<?>> getAttributeNodes() ;

/**
* Return the type for which this subgraph was defined.
* @return managed type referenced by the subgraph
*/

public Class<T> getClassType ()

Use of Entity Graphs in find and query operations

3.74.1

An entity graph can be used with the find method or as a query hint to override or augment
FetchType semantics.

The standard properties javax.persistence.fetchgraph and javax.persis-
tence.loadgraph are used to specify such graphs to queries and £ind operations.

The default fetch graph for an entity or embeddable is defined to consist of the transitive closure of all
of its attributes that are specified as FetchType . EAGER (or defaulted as such).

The persistence provider is permitted to fetch additional entity state beyond that specified by a fetch
graph or load graph. It is required, however, that the persistence provider fetch all state specified by the
fetch or load graph.

Fetch Graph Semantics

When the javax.persistence.fetchgraph property is used to specify an entity graph,
attributes that are specified by attribute nodes of the entity graph are treated as FetchType . EAGER
and attributes that are not specified are treated as FetchType . LAZY.

The following rules apply, depending on attribute type. The rules of this section are applied recursively.

A primary key or version attribute never needs to be specified in an attribute node of a fetch graph.
(This applies to composite primary keys as well, including embedded id primary keys.) When an entity
is fetched, its primary key and version attributes are always fetched. It is not incorrect, however, to
specify primary key attributes or version attributes.

Attributes other than primary key and version attributes are assumed not to be fetched unless the
attribute is specified. The following rules apply to the specification of attributes.

e Ifthe attribute is an embedded attribute, and the attribute is specified in an attribute node, but a
subgraph is not specified for the attribute, the default fetch graph for the embeddable is
fetched. If a subgraph is specified for the attribute, the attributes of the embeddable are fetched
according to their specification in the corresponding subgraph.

JSR-338 Maintenance Release 117 7/17/17

Oracle

Entity Operations Java Persistence 2.2, Maintenance Release Entity Graphs

e If the attribute is an element collection of basic type, and the attribute is specified in an
attribute node, the element collection together with its basic elements is fetched.

e If the attribute is an element collection of embeddables, and the attribute is specified in an
attribute node, but a subgraph is not specified for the attribute, the element collection together
with the default fetch graph of its embeddable elements is fetched. If a subgraph is specified
for the attribute, the attributes of the embeddable elements are fetched according to the corre-
sponding subgraph specification.

e If the attribute is a one-to-one or many-to-one relationship, and the attribute is specified in an
attribute node, but a subgraph is not specified for the attribute, the default fetch graph of the
target entity is fetched. If a subgraph is specified for the attribute, the attributes of the target
entity are fetched according to the corresponding subgraph specification.

e If the attribute is a one-to-many or many-to-many relationship, and the attribute is specified in
an attribute node, but a subgraph is not specified, the collection is fetched and the default fetch
graphs of the referenced entities are fetched. If a subgraph is specified for the attribute, the
entities in the collection are fetched according to the corresponding subgraph specification.

e Ifthe key of a map which has been specified in an attribute node is a basic type, it is fetched. If
the key of a map which has been specified in an attribute node is an embedded type, the default
fetch graph is fetched for the embeddable. Otherwise, if the key of the map is an entity, and a
map key subgraph is not specified for the attribute node, the map key is fetched according to its
default fetch graph. If a key subgraph is specified for the map key attribute, the map key
attribute is fetched according to the map key subgraph specification.

Examples:

@NamedEntityGraph

@Entity

public class Phonenumber({
@Id
protected String number;

protected PhoneTypeEnum type;

In the above example, only the number attribute would be eagerly fetched.

71717 118 JSR-338 Maintenance Release

Oracle

Entity Graphs Java Persistence 2.2, Maintenance Release Entity Operations
@NamedEntityGraph (
attributeNodes={@NamedAttributeNode ("projects") }
)
@Entity
public class Employee({
@Id
@GeneratedValue
protected long id;
@Basic
protected String name;
@Basic
protected String employeeNumber;
@OneToMany ()
protected List<Dependents> dependents;
@OneToMany ()
protected List<Project> projects;
@OneToMany ()
protected List<PhoneNumber> phoneNumbers;
@Entity
@Inheritance
public class Project{
@QId
@Generatedvalue
protected long id;
String name;
@OneToOne (fetch=FetchType.EAGER)
protected Requirements doc;
@Entity
public class LargeProject extends Project{
@OneToOne (fetch=FetchType.LAZY)
protected Employee approver;
JSR-338 Maintenance Release 119 7/17/17

Oracle

Entity Operations

3.7.4.2

Java Persistence 2.2, Maintenance Release Entity Graphs
@Entity
public class Requirements{
@Id

protected long id;

@Lob
protected String description;

@OneToOne (fetch=FetchType.LAZY)
protected Approval approval

In the above example, the Employee entity's primary key will be fetched as well as the related
Project instances, whose default fetch graph (id, name, and doc attributes) will be fetched. The
related Requirements object will be fetched according to its default fetch graph.

If the approver attribute of LargeProject were FetchType .EAGER, and if any of the projects
were instances of LargeProject, their approver attributes would also be fetched. Since the type
of the approver attribute is Employee, the approver's default fetch graph (id, name, and
employeeNumber attributes) would also be fetched.

Load Graph Semantics

When the javax.persistence.loadgraph property is used to specify an entity graph, attributes
that are specified by attribute nodes of the entity graph are treated as FetchType.EAGER and
attributes that are not specified are treated according to their specified or default FetchType.

The following rules apply. The rules of this section are applied recursively.

e A primary key or version attribute never needs to be specified in an attribute node of a load
graph. (This applies to composite primary keys as well, including embedded id primary keys.)
When an entity is fetched, its primary key and version attributes are always fetched. It is not
incorrect, however, to specify primary key attributes or version attributes.

e Ifthe attribute is an embedded attribute, and the attribute is specified in an attribute node, but a
subgraph is not specified for the attribute, the default fetch graph for the embeddable is
fetched. If a subgraph is specified for the attribute, attributes that are specified by the subgraph
are also fetched.

e If the attribute is an element collection of basic type, and the attribute is specified in an
attribute node, the element collection together with its basic elements is fetched.

e If the attribute is an element collection of embeddables, and the attribute is specified in an
attribute node, the element collection together with the default fetch graph of its embeddable
elements is fetched. If a subgraph is specified for the attribute, attributes that are specified by
the subgraph are also fetched.

7/17/17

120 JSR-338 Maintenance Release

Oracle

Entity Graphs

Java Persistence 2.2, Maintenance Release Entity Operations

If the attribute is a one-to-one or many-to-one relationship, and the attribute is specified in an
attribute node, the default fetch graph of the target entity is fetched. If a subgraph is specified
for the attribute, attributes that are specified by the subgraph are also fetched.

If the attribute is a one-to-many or many-to-many relationship, and the attribute is specified in
an attribute node, the collection is fetched and the default fetch graphs of the referenced enti-
ties are fetched. If a subgraph is specified for the attribute, attributes that are specified by the
subgraph are also fetched.

If the key of a map which has been specified in an attribute node is a basic type, it is fetched. If
the key of a map which has been specified in an attribute node is an embedded type, the default
fetch graph is fetched for the embeddable. Otherwise, if the key of the map is an entity, the
map key is fetched according to its default fetch graph. If a key subgraph is specified for the
map key attribute, additional attributes are fetched as specified in the key subgraph.

Examples:

@NamedEntityGraph
@Entity
public class Phonenumber

In the above example, the number and type attributes are fetched.

@Id
protected String number;

protected PhoneTypeEnum type;

@NamedEntityGraph (

)

attributeNodes={@NamedAttributeNode ("projects") }

@Entity
public class Employee({

@Id
@GeneratedvValue
protected long 1id;

@Basic
protected String name;

@Basic
protected String employeeNumber;

@OneToMany ()
protected List<Dependents> dependents;

@OneToMany ()
protected List<Project> projects;

JSR-338 Maintenance Release 121

7/17/17

Oracle

Entity Operations

3.8

Java Persistence 2.2, Maintenance Release Type Conversion of Basic Attributes
@OneToMany ()
protected List<PhoneNumber> phoneNumbers;
}
@Entity

@Inheritance

public class Project{
@Id
@GeneratedValue
protected long id;

String name;

@OneToOne (fetch=FetchType.EAGER)
protected Requirements doc;

@Entity
public class LargeProject extends Project{

@OneToOne (fetch=FetchType.LAZY)
protected Employee approver;

@Entity

public class Requirements{
@Id
protected long id;

@Lob
protected String description;

@OneToOne (fetch=FetchType.LAZY)
protected Approval approval

In the above example, the default fetch graph (id, name, employeeNumber attributes) of
Employee is fetched. The default fetch graphs of the related Project instances (id, name, and
doc attributes) and their Requirements instances (id and description attributes) are also
fetched.

Type Conversion of Basic Attributes

The attribute conversion facility allows the developer to specify methods to convert between the entity
attribute representation and the database representation for attributes of basic types. Converters can be
used to convert basic attributes defined by entity classes, mapped superclasses, or embeddable
classes.?

7/17/17

122 JSR-338 Maintenance Release

Type Conversion of Basic Attributes Java Persistence 2.2, Maintenance Release

Entity Operations

An attribute converter must implement the javax.persistence.AttributeConverter inter-
face. A converter implementation class must be annotated with the Converter annotation or defined
in the XML descriptor as a converter. If the value of the autoApply element of the Converter
annotation is true, the converter will be applied to all attributes of the target type, including to basic
attribute values that are contained within other, more complex attribute types. See Section 10.6.

*

/

and back again.
Note that the X and Y types may be the same Java type.

X% ok oF X X X

@param X the type of the entity attribute
* @param Y the type of the database column

A class that implements this interface can be used to convert
entity attribute state into database column representation

*/
public interface AttributeConverter<X,Y> ({

/**
* Converts the value stored in the entity attribute into the
* data representation to be stored in the database.
*
* @param attribute the entity attribute value to be converted
* @return the converted data to be stored in the database
* column
*/

public Y convertToDatabaseColumn (X attribute);

/**

* Converts the data stored in the database column into the

* value to be stored in the entity attribute.

* Note that it is the responsibility of the converter writer to
* specify the correct dbData type for the corresponding column
* for use by the JDBC driver: i.e., persistence providers are
* not expected to do such type conversion.

*

* @param dbData the data from the database column to be

* converted

* @return the converted value to be stored in the entity

* attribute

*/

public X convertToEntityAttribute (Y dbData);

Attribute converter classes in Java EE environments support dependency injection through the Contexts
and Dependency Injection API (CDI) [7] when CDI is enabled?®!l. An attribute converter class that
makes use of CDI injection may also define lifecycle callback methods annotated with the PostCon-
struct and PreDestroy annotations. These methods will be invoked after injection has taken

place and before the attribute converter instance is destroyed respectively.

[50] We plan to provide a facility for more complex attribute conversions in a future release of this specification.
[51] CDlI is enabled by default in Java EE. See the Java EE specification [6].

JSR-338 Maintenance Release 12 3

7/17/17

Oracle

Entity Operations Java Persistence 2.2, Maintenance Release Type Conversion of Basic Attributes

The persistence provider is responsible for using the CDI SPI to create instances of the attribute con-
verter class; to perform injection upon such instances; to invoke their PostConstruct and Pre-
Destroy methods, if any; and to dispose of the attribute converter instances.
The persistence provider is only required to support CDI injection into attribute converters in Java EE
container environments!>2). If CDI is not enabled, the persistence provider must not invoke attribute
converters that depend upon CDI injection.
An attribute converter is a noncontextual object. In supporting injection into attribute converters, the
persistence provider must behave as if it carries out the following steps involving the use of the CDI
SPI. (See [7]).

¢ Obtain a BeanManager instance. (See section 9.1.)

e (Create an AnnotatedType instance for the attribute converter class.

e C(Create an InjectionTarget instance for the annotated type.

¢ C(Create a CreationalContext.

¢ Instantiate the listener by calling the InjectionTarget produce method.

¢ Inject the listener instance by calling the InjectionTarget inject method on the
instance.

e Invoke the PostConstruct callback, if any, by calling the InjectionTarget post-
Construct method on the instance.

When the listener instance is to be destroyed, the persistence provider must behave as if it carries out the
following steps.

e (allthe InjectionTarget preDestroy method on the instance.
e (allthe InjectionTarget dispose method on the instance
e (allthe CreationalContext release method.

Persistence providers may optimize the steps above, e.g. by avoiding calls to the actual CDI SPI and
relying on container-specific interfaces instead, as long as the outcome is the same.

Attribute converters that do not make use of CDI injection are stateless. The lifecycle of such attribute
converters is unspecified.

[52] The persistence provider may support CDI injection into attribute converters in other environments in which the BeanManager is
available.

71717 124 JSR-338 Maintenance Release

Oracle

Caching

3.9

Java Persistence 2.2, Maintenance Release Entity Operations

The conversion of all basic types is supported except for the following: Id attributes (including the
attributes of embedded ids and derived identities), version attributes, relationship attributes, and
attributes explicitly annotated as Enumerated or Temporal or designated as such in the XML
descriptor. Auto-apply converters will not be applied to such attributes, and applications that apply con-
verters to such attributes through use of the Convert annotation will not be portable.

Type conversion may be specified at the level of individual attributes by means of the Convert anno-
tation. The Convert annotation may also be used to override or disable an auto-apply conversion.
See section 11.1.10.

The Convert annotation may be applied directly to an attribute of an entity, mapped superclass, or
embeddable class to specify conversion of the attribute or to override the use of a converter that has
been specified as autoApply=true. When persistent properties are used, the Convert annotation
is applied to the getter method.

The Convert annotation may be applied to an entity that extends a mapped superclass to specify or
override the conversion mapping for an inherited basic or embedded attribute.

The persistence provider runtime is responsible for invoking the specified conversion methods for the
target attribute type when loading the entity attribute from the database and before storing the entity
attribute state to the database. The persistence provider must apply any conversion methods to
instances of attribute values in path expressions used within Java Persistence query language queries or
criteria queries (such as in comparisons, bulk updates, etc.) before sending them to the database for the
query execution. When such converted attributes are used in comparison operations with literals or
parameters, the value of the literal or parameter to which they are compared must also be converted. If
the result of a Java Persistence query language query or criteria query includes one or more entity
attributes for which conversion mappings have been specified, the persistence provider must apply the
specified conversions to the corresponding values in the query result before returning them to the appli-
cation. The use of functions, including aggregates, on converted attributes is undefined. If an exception
is thrown from a conversion method, the persistence provider must wrap the exception in a Persistence-
Exception and, if the persistence context is joined to a transaction, mark the transaction for rollback.

Caching

This specification supports the use of a second-level cache by the persistence provider. The sec-
ond-level cache, if used, underlies the persistence context, and is largely transparent to the application.

A second-level cache is typically used to enhance performance. Use of a cache, however, may have
consequences in terms of the up-to-dateness of the data seen by the application, resulting in “stale
reads”. A stale read is defined as the reading of entities or entity state that is older than the point at
which the persistence context was started.

This specification defines the following portable configuration options that can be used by the applica-
tion developer to control caching behavior. Persistence providers may support additional provider-spe-
cific options, but must observe all specification-defined options.

JSR-338 Maintenance Release 125 7/17/17

Oracle

Entity Operations

3.9.1

Java Persistence 2.2, Maintenance Release Caching

The shared-cache-mode Element

Whether the entities and entity-related state of a persistence unit will be cached is determined by the
value of the shared-cache-mode element of the persistence.xml file.

The shared-cache-mode element has five possible values: ALL, NONE, ENABLE SELECTIVE,
DISABLE SELECTIVE, UNSPECIFIED.

A value of ALL causes all entities and entity-related state and data to be cached.

A value of NONE causes caching to be disabled for the persistence unit. Persistence providers must not
cache if NONE is specified.

The values ENABLE SELECTIVE and DISABLE SELECTIVE are used in conjunction with the
Cacheable annotation (or XML element). The Cacheable annotation specifies whether an entity
should be cached if such selective caching is enabled by the persistence.xml
shared-cache-mode element. The Cacheable element is specified on the entity class. It applies
to the given entity and its subclasses unless subsequently overridden by a subclass.

e Cacheable (false) means that the entity and its state must not be cached by the provider.

¢ A value of ENABLE SELECTIVE enables the cache and causes entities for which Cache-
able (true) (or its XML equivalent) is specified to be cached. Entities for which Cache-
able (true) is not specified or for which Cacheable (false) is specified must not be
cached.

¢ A value of DISABLE SELECTIVE enables the cache and causes all entities to be cached
except those for which Cacheable (false) is specified. Entities for which Cache-
able (false) is specified must not be cached.

If either the shared-cache-mode element is not specified in the persistence.xml file or the
value of the shared-cache-mode element is UNSPECIFIED, and the javax.persis-
tence.sharedCache.mode property is not specified, the behavior is not defined, and pro-
vider-specific defaults may apply. If the shared-cache-mode element and the
javax.persistence.sharedCache.mode property are not specified, the semantics of the
Cacheable annotation (and XML equivalent) are undefined.

The persistence provider is not required to support use of a second-level cache. If the persistence pro-
vider does not support use of a second-level cache or a second-level cache is not installed, this element

will be ignored and no caching will occur.

Further control over the second-level cache is described in section 7.10.

7/17/17

126 JSR-338 Maintenance Release

Oracle

Caching

3.9.2

Java Persistence 2.2, Maintenance Release Entity Operations

Cache Retrieve Mode and Cache Store Mode Properties

Cache retrieve mode and cache store mode properties may be specified at the level of the persistence
context by means of the EntityManager set Property method. These properties may be specified for
the EntityManager find and refresh methods and the Query, TypedQuery, and Stored-
ProcedureQuery setHint methods. Cache retrieve mode and/or cache store mode properties
specified for the find, refresh, and Query, TypedQuery, and StoredProcedureQuery
setHint methods override those specified for the persistence context for the specified find and
refresh invocations, and for the execution of the specified queries respectively.

If caching is disabled by the NONE value of the shared-cache-mode element, cache retrieve mode
and cache store mode properties must be ignored. Otherwise, if the ENABLE SELECTIVE value is
specified, but Cacheable (true) is not specified for a particular entity, they are ignored for that
entity; if the DISABLE SELECTIVE value is specified, they are ignored for any entities for which
Cacheable (false) is specified.

Cache retrieve mode and cache store mode properties must be observed when caching is enabled,
regardless of whether caching is enabled due to the specification of the shared-cache-mode ele-
ment or enabled due to provider-specific options. Applications that make use of cache retrieve mode or
cache store mode properties but which do not specify the shared-cache-mode element will not be
portable.

The cache retrieve mode and cache store mode properties are javax.persis-
tence.cache.retrieveMode and javax.persistence.cache.storeMode respectively.
These properties have the semantics defined below.

The retrieveMode property specifies the behavior when data is retrieved by the £ind methods and
by the execution of queries. The retrieveMode property is ignored for the refresh method,
which always causes data to be retrieved from the database, not the cache.

package Jjavax.persistence;
public enum CacheRetrieveMode ({

/**
* Read entity data from the cache: this is
* the default behavior.
*/

USE,

/**
* Bypass the cache: get data directly from
* the database.
*/

BYPASS

JSR-338 Maintenance Release 127 7/17/17

Oracle

Entity Operations

Java Persistence 2.2, Maintenance Release Caching

The storeMode property specifies the behavior when data is read from the database and when data is
committed into the database.

package Jjavax.persistence;
public enum CacheStoreMode ({

/**
* Insert entity data into cache when read from database
* and insert/update entity data when committed into database:
* this is the default behavior. Does not force refresh of
* already cached items when reading from database.
*/
USE,

/**
* Don't insert into cache.
*/

BYPASS,

/**
* Insert/update entity data into cache when read
* from database and when committed into database.
* Forces refresh of cache for items read from database.
*/
REFRESH

7/17/17

128 JSR-338 Maintenance Release

Oracle

Query APIs Java Persistence 2.2, Maintenance Release Entity Operations

3.10 Query APIs

The Query and TypedQuery APIs are used for the execution of both static queries and dynamic que-
ries. These APIs also support parameter binding and pagination control. The StoredProcedure-
Query API is used for the execution of queries that invoke stored procedures defined in the database.

3.10.1 Query Interface

package javax.persistence;

import Jjava.util.Calendar;
import java.util.Date;
import Jjava.util.List;
import Jjava.util.Set;
import java.util.Map;
import Jjava.util.Stream;

/**
* Interface used to control query execution.
*/

public interface Query {

/

*

Execute a SELECT query and return the query results

as an untyped List.

@return a list of the results

@throws IllegalStateException if called for a Java
Persistence query language UPDATE or DELETE statement

@throws QueryTimeoutException if the query execution exceeds
the query timeout value set and only the statement is
rolled back

@throws TransactionRequiredException if a lock mode other
than NONE has been been set and there is no
transaction or the persistence context has not been
joined to the transaction

@throws PessimisticLockException if pessimistic locking
fails and the transaction is rolled back

@throws LockTimeoutException if pessimistic locking
fails and only the statement is rolled back

@throws PersistenceException if the query execution exceeds
the query timeout value set and the transaction
is rolled back

Lo S S T R . SR S S S S .

*

*/
List getResultList();

/**

* Execute a SELECT query that returns a single untyped result.

@return the result

@throws NoResultException if there is no result

@throws NonUnigqueResultException if more than one result

@throws IllegalStateException if called for a Java
Persistence query language UPDATE or DELETE statement

@throws QueryTimeoutException if the query execution exceeds
the query timeout value set and only the statement is
rolled back

@throws TransactionRequiredException if a lock mode other

X% b b X X X ot %

JSR-338 Maintenance Release 129 7/17/17

Oracle

Entity Operations

Java Persistence 2.2, Maintenance Release Query APIs

than NONE has been been set and there is no
transaction or the persistence context has not been
joined to the transaction

@throws PessimisticLockException if pessimistic locking
fails and the transaction is rolled back

@throws LockTimeoutException if pessimistic locking
fails and only the statement is rolled back

@throws PersistenceException if the query execution exceeds
the query timeout value set and the transaction
is rolled back

b S R S S

*

*/
Object getSingleResult();

/

*

Execute an update or delete statement.

@return the number of entities updated or deleted

@throws IllegalStateException if called for a Java
Persistence query language SELECT statement or for
a criteria query

@throws TransactionRequiredException if there is
no transaction or the persistence context has not
been joined to the transaction

@throws QueryTimeoutException if the statement execution
exceeds the query timeout value set and only the
statement is rolled back

@throws PersistenceException if the query execution exceeds
the query timeout value set and the transaction
is rolled back

X% X b b X X ok b X X X ot %

*

*/

int executeUpdate();

/**
* Set the maximum number of results to retrieve.
* @param maxResult
* @return the same query instance
* @throws IllegalArgumentException if the argument is negative
*
/

Query setMaxResults (int maxResult);

/**
* The maximum number of results the query object was set to
* retrieve. Returns Integer.MAX VALUE if setMaxResults was not
* applied to the query object.
* @return maximum number of results
*/
int getMaxResults () ;

/**
* Set the position of the first result to retrieve.
* (@param startPosition position of the first result,
* numbered from 0
* @return the same query instance
* @throws IllegalArgumentException if the argument is negative
*
/

Query setFirstResult (int startPosition);

7/17/17

130 JSR-338 Maintenance Release

Oracle

Query APIs

Java Persistence 2.2, Maintenance Release Entity Operations

/**

* The position of the first result the query object was set to
* retrieve. Returns 0 if setFirstResult was not applied to the
* query object.

* @return position of the first result

*/

int getFirstResult();

/**

* Set a query property or hint. The hints elements may be used
to specify query properties and hints. Properties defined by
this specification must be observed by the provider.
Vendor-specific hints that are not recognized by a provider
must be silently ignored. Portable applications should not
rely on the standard timeout hint. Depending on the database
in use and the locking mechanisms used by the provider,
this hint may or may not be observed.

@param hintName name of the property or hint
@param value
@return the same query instance

X% X ok ok X X ok o X X

*

valid for the implementation
*/
Query setHint (String hintName, Object wvalue);

/**
* Get the properties and hints and associated values that are
* in effect for the query instance.
* @return query properties and hints
*/
Map<String, Object> getHints();

/**

* Bind the value of a Parameter object.

* (@param param parameter object
* @param value parameter value
* @return the same query instance
* @throws IllegalArgumentException if the parameter
* does not correspond to a parameter of the query
*
/
<T> Query setParameter (Parameter<T> param, T value);
/**
* Bind an instance of java.util.Calendar to a Parameter object.
* (@param param parameter object
* @param value parameter value
* @param temporalType
* @return the same query instance
* @throws IllegalArgumentException if the parameter does not
* correspond to a parameter of the query
*
/

Query setParameter (Parameter<Calendar> param,
Calendar value,
TemporalType temporalType);

JSR-338 Maintenance Release 131 7/17/17

@throws IllegalArgumentException if the second argument is not

Oracle

Entity Operations Java Persistence 2.2, Maintenance Release Query APIs
/ * %
* Bind an instance of java.util.Date to a Parameter object.
* (@param param parameter object
* @param value parameter value
* @param temporalType
* @return the same query instance
* @throws IllegalArgumentException if the parameter does not
* correspond to a parameter of the query
*/
Query setParameter (Parameter<Date> param,
Date value,
TemporalType temporalType);
/ * %
* Bind an argument value to a named parameter.
* (@param name parameter name
* (@param value parameter value
* @return the same query instance
* @throws IllegalArgumentException if the parameter name does
* not correspond to a parameter of the query or if
* the argument is of incorrect type
*/
Query setParameter (String name, Object value);
/ * *
* Bind an instance of java.util.Calendar to a named parameter.
* (@param name parameter name
* (@param value parameter value
* @param temporalType
* @return the same query instance
* @throws IllegalArgumentException if the parameter name does
* not correspond to a parameter of the query or if
* the value argument is of incorrect type
*/
Query setParameter (String name,
Calendar value,
TemporalType temporalType);
/ * %
* Bind an instance of java.util.Date to a named parameter.
* @param name parameter name
* @param value parameter value
* @param temporalType
* @return the same query instance
* @throws IllegalArgumentException if the parameter name does
* not correspond to a parameter of the query or if
* the value argument is of incorrect type
*/
Query setParameter (String name,
Date value,
TemporalType temporalType);
71717 132 JSR-338 Maintenance Release

Oracle

Query APIs

L S S

*
*

Qu
/*

*

% X ok ok X X

*
*

Qu

X% > b X X X o

*

*

Java Persistence 2.2, Maintenance Release Entity Operations

Bind an argument value to a positional parameter.

@param position

@param value parameter value

@return the same query instance

@throws IllegalArgumentException if position does not
correspond to a positional parameter of the
query or if the argument is of incorrect type

/

ery setParameter (int position, Object value);

*

Bind an instance of java.util.Calendar to a positional
parameter.
@param position
@param value parameter value
@param temporalType
@return the same query instance
@throws IllegalArgumentException if position does not
correspond to a positional parameter of the query or
if the value argument is of incorrect type
/
ery setParameter (int position,
Calendar value,
TemporalType temporalType);

*

Bind an instance of java.util.Date to a positional parameter.

@param position

@param value parameter value

@param temporalType

@return the same query instance

@throws IllegalArgumentException if position does not
correspond to a positional parameter of the query or
if the value argument is of incorrect type

/

Query setParameter (int position,

X% b b X X X ot %

*

*

Date wvalue,
TemporalType temporalType);

*

Get the parameter objects corresponding to the declared

parameters of the query.

Returns empty set if the query has no parameters.

This method is not required to be supported for native

queries.

@return set of the parameter objects

@throws IllegalStateException if invoked on a native
query when the implementation does not support
this use

/

Set<Parameter<?>> getParameters () ;

/*

*

* % % X

*

Get the parameter object corresponding to the declared
parameter of the given name.

This method is not required to be supported for native
queries.

@param name

JSR-338 Maintenance Release 133 7/17/17

Oracle

Entity Operations

* % X ok ot

*
*

Pa

/

L S S R S R . S

*

*

Java Persistence 2.2, Maintenance Release Query APIs

@return parameter object

@throws IllegalArgumentException if the parameter of the
specified name does not exist

@throws IllegalStateException if invoked on a native
query when the implementation does not support
this use

/

rameter<?> getParameter (String name);

*

Get the parameter object corresponding to the declared

parameter of the given name and type.

This method is required to be supported for criteria queries

only.

@param name parameter name

@param type

@return parameter object

@throws IllegalArgumentException if the parameter of the
specified name does not exist or is not assignable
to the type

@throws IllegalStateException if invoked on a native
query or Java Persistence query language query when
the implementation does not support this use

/

<T> Parameter<T> getParameter (String name, Class<T> type);

/

X% >k b X X X b X X X

*

*

*

Get the parameter object corresponding to the declared

positional parameter with the given position.

This method is not required to be supported for native

queries.

@param position

@return parameter object

@throws IllegalArgumentException if the parameter with the
specified position does not exist

@throws IllegalStateException if invoked on a native
query when the implementation does not support
this use

/

Parameter<?> getParameter (int position);

/*

*

bR R R R . S

*

*

Get the parameter object corresponding to the declared

positional parameter with the given position and type.

This method is not required to be supported by the provider.

@param position

@param type

@return parameter object

@throws IllegalArgumentException if the parameter with the
specified position does not exist or is not assignable
to the type

@throws IllegalStateException if invoked on a native
query or Java Persistence query language query when
the implementation does not support this use

*/

<T> Parameter<T> getParameter (int position, Class<T> type);

7/17/17

134 JSR-338 Maintenance Release

Oracle

Query APIs

/*
*
*
*
*
*

Java Persistence 2.2, Maintenance Release Entity Operations

*

Return a boolean indicating whether a value has been bound
to the parameter.

@param param parameter object

@return boolean indicating whether parameter has been bound

/

boolean isBound (Parameter<?> param);

/*

*

X% ok ok X X

*
*

*

Return the input value bound to the parameter.
(Note that OUT parameters are unbound.)

@param param parameter object

@return parameter value

@throws IllegalArgumentException if the parameter is not
a parameter of the query

@throws IllegalStateException if the parameter has not been
been bound

/

<T> T getParameterValue (Parameter<T> param);

/

X% > ok X X X o

*

*

Return the input value bound to the named parameter.

(Note that OUT parameters are unbound.)

@param name parameter name

@return parameter value

@throws IllegalStateException if the parameter has not been
been bound

@throws IllegalArgumentException if the parameter of the
specified name does not exist

*/

Object getParameterValue (String name) ;

/**

*

X% ok ok X X

*

Return the input value bound to the positional parameter.

(Note that OUT parameters are unbound.)

@param position

@return parameter value

@throws IllegalStateException if the parameter has not been
been bound

@throws IllegalArgumentException if the parameter with the
specified position does not exist

*/

Object getParameterValue (int position);

/**

*
*
*
*
*

Set the flush mode type to be used for the query execution.
The flush mode type applies to the query regardless of the
flush mode type in use for the entity manager.

@param flushMode

@return the same query instance

*/
Query setFlushMode (FlushModeType flushMode) ;

JSR-338 Maintenance Release

135 717/17

Oracle

Entity Operations

Java Persistence 2.2, Maintenance Release Query APIs

/**
* Get the flush mode in effect for the gquery execution.
* If a flush mode has not been set for the query object,
* returns the flush mode in effect for the entity manager.
* @return flush mode
*/
FlushModeType getFlushMode () ;

/**
* Set the lock mode type to be used for the query execution.
@param lockMode
@return the same query instance
@throws IllegalStateException if the query is found not to be
a Java Persistence query language SELECT query
* or a CriteriaQuery query
*
/
Query setLockMode (LockModeType lockMode) ;

/**
* Get the current lock mode for the query. Returns null if a
lock mode has not been set on the query object.
@return lock mode
@throws IllegalStateException if the query is found not to be
a Java Persistence query language SELECT query or
* a Criteria API query
*
/
LockModeType getLockMode () ;

/

*
*
*
*

X % X ot

*

Return an object of the specified type to allow access to
the provider-specific API. 1If the provider's query
implementation does not support the specified class, the
PersistenceException is thrown.

@param cls the class of the object to be returned. This is
normally either the underlying query
implementation class or an interface that it
implements.

@return an instance of the specified class

@throws PersistenceException if the provider does not support

the call

X% X ok ok X X ok ok X X

*

*/
<T> T unwrap (Class<T> cls);

/

*

Execute a SELECT query and return the query results

as an untyped java.util.Stream.

By default this method delegates to getResultlList () .stream(),
however the persistence provider may choose to override this
method to provide additional capabilities.

@return a stream of the results

@throws IllegalStateException if called for a Java
Persistence query language UPDATE or DELETE statement

@throws QueryTimeoutException if the query execution exceeds
the query timeout value set and only the statement is
rolled back

@throws TransactionRequiredException if a lock mode other than
NONE has been set and there is no transaction
or the persistence context has not been joined to

5 3 > F o X b 3k X X ok ok X X

7/17/17

136 JSR-338 Maintenance Release

Oracle

Query APIs Java Persistence 2.2, Maintenance Release Entity Operations
* the transaction
* @throws PessimisticLockException if pessimistic locking
* fails and the transaction is rolled back
* @throws LockTimeoutException if pessimistic locking
* fails and only the statement is rolled back
* @throws PersistenceException if the query execution exceeds
*

the query timeout value set and the transaction
is rolled back

*

*/
default Stream getResultStream() {
return getResultlList () .stream();

}

JSR-338 Maintenance Release 137 7/17/17

Oracle

Entity Operations Java Persistence 2.2, Maintenance Release Query APIs

3.10.2 TypedQuery Interface

package Jjavax.persistence;

import Jjava.util.List;
import Jjava.util.Date;
import java.util.Calendar;
import Jjava.util.Stream;

/**
* Interface used to control the execution of typed queries.
* @param <X> query result type
*
/
public interface TypedQuery<X> extends Query {
/**
* Execute a SELECT query and return the query results
as a typed List.
@return a list of the results
@throws IllegalStateException if called for a Java
Persistence query language UPDATE or DELETE statement
@throws QueryTimeoutException if the query execution exceeds
the query timeout value set and only the statement is
rolled back
@throws TransactionRequiredException if a lock mode other
than NONE has been been set and there is no
transaction or the persistence context has not been
joined to the transaction
@throws PessimisticLockException if pessimistic locking
fails and the transaction is rolled back
@throws LockTimeoutException if pessimistic locking
fails and only the statement is rolled back
@throws PersistenceException if the query execution exceeds
the query timeout value set and the transaction
is rolled back

X% b b X X 3 ok o X 3k 3k X X % o X

*

*/
List<X> getResultList();

/**

* Execute a SELECT query that returns a single result.

@return the result

@throws NoResultException if there is no result

@throws NonUnigqueResultException if more than one result

@throws IllegalStateException if called for a Java
Persistence query language UPDATE or DELETE statement

@throws QueryTimeoutException if the query execution exceeds
the query timeout value set and only the statement is
rolled back

@throws TransactionRequiredException if a lock mode other
than NONE has been been set and there is no
transaction or the persistence context has not been
joined to the transaction

@throws PessimisticLockException if pessimistic locking
fails and the transaction is rolled back

@throws LockTimeoutException if pessimistic locking
fails and only the statement is rolled back

@throws PersistenceException if the query execution exceeds
the query timeout value set and the transaction
is rolled back

b T R S e S S S S e S

/
X getSingleResult () ;

71717 138 JSR-338 Maintenance Release

Oracle

Query APIs

Java Persistence 2.2, Maintenance Release Entity Operations

/**
* Set the maximum number of results to retrieve.
* @param maxResult
* @return the same query instance
* @throws IllegalArgumentException if the argument is negative
*/
TypedQuery<X> setMaxResults (int maxResult) ;

/xx
Set the position of the first result to retrieve.
@param startPosition position of the first result,
numbered from 0
@return the same query instance
* @throws IllegalArgumentException if the argument is negative
*
/
TypedQuery<X> setFirstResult (int startPosition);

* % X ok ot

/**

* Set a query property or hint. The hints elements may be used
* to specify query properties and hints. Properties defined by
* this specification must be observed by the provider.

* Vendor-specific hints that are not recognized by a provider
* must be silently ignored. Portable applications should not

* rely on the standard timeout hint. Depending on the database
* in use and the locking mechanisms used by the provider,

* this hint may or may not be observed.

* @param hintName name of property or hint

* @param value

* @return the same query instance

* @throws IllegalArgumentException if the second argument is not
* valid for the implementation

*

/

TypedQuery<X> setHint (String hintName, Object wvalue);

/**

* Bind the value of a Parameter object.

* (@param param parameter object

* @param value parameter value

* @return the same query instance

* @throws IllegalArgumentException if the parameter

* does not correspond to a parameter of the

* query

*/
<T> TypedQuery<X> setParameter (Parameter<T> param, T value);
/**

* Bind an instance of java.util.Calendar to a Parameter object.

* (@param param parameter object

* (@param value parameter value

* @param temporalType

* @return the same query instance

* @throws IllegalArgumentException if the parameter does not

* correspond to a parameter of the query

*

/

TypedQuery<X> setParameter (Parameter<Calendar> param,
Calendar value,
TemporalType temporalType);

JSR-338 Maintenance Release 139 7/17/17

Oracle

Entity Operations

Java Persistence 2.2, Maintenance Release Query APIs

Bind an instance of java.util.Date to a Parameter object.
@param param parameter object
@param value parameter value
@param temporalType
@return the same query instance
@throws IllegalArgumentException if the parameter does not
* correspond to a parameter of the query
*
/
TypedQuery<X> setParameter (Parameter<Date> param,
Date value,
TemporalType temporalType);

X% ok b X X X

Bind an argument value to a named parameter.

@param name parameter name

@param value parameter value

@return the same query instance

@throws IllegalArgumentException if the parameter name does
not correspond to a parameter of the query or if

* the argument is of incorrect type

*

/

TypedQuery<X> setParameter (String name, Object value);

/

% X ok ok X X

*

Bind an instance of java.util.Calendar to a named parameter.

@param name parameter name

@param value parameter value

@param temporalType

@return the same query instance

@throws IllegalArgumentException if the parameter name does
not correspond to a parameter of the query or if
the value argument is of incorrect type

% X ok X X X

*

*/
TypedQuery<X> setParameter (String name,
Calendar value,
TemporalType temporalType);

*

Bind an instance of java.util.Date to a named parameter.

@param name parameter name

@param value parameter value

@param temporalType

@return the same query instance

@throws IllegalArgumentException if the parameter name does
not correspond to a parameter of the query or if
the value argument is of incorrect type

X% > b X X X o

*

*/
TypedQuery<X> setParameter (String name,
Date wvalue,
TemporalType temporalType);

7/17/17

140 JSR-338 Maintenance Release

Oracle

Query APIs Java Persistence 2.2, Maintenance Release Entity Operations

/ * *

* Bind an argument value to a positional parameter.

* @param position

* @param value parameter value

* @return the same query instance

* @throws IllegalArgumentException if position does not
* correspond to a positional parameter of the

* query or if the argument is of incorrect type
*/

TypedQuery<X> setParameter (int position, Object value);

/ * %

* Bind an instance of java.util.Calendar to a positional
* parameter.

* @param position

* @param value parameter value

* @param temporalType

* @return the same query instance

* @throws IllegalArgumentException if position does not
* correspond to a positional parameter of the query
* or if the wvalue argument is of incorrect type
*/

TypedQuery<X> setParameter (int position,
Calendar value,
TemporalType temporalType);

/**
* Bind an instance of java.util.Date to a positional parameter.
* @param position
* @param value parameter value
* @param temporalType
* @return the same query instance
* @throws IllegalArgumentException if position does not
* correspond to a positional parameter of the query
* or if the wvalue argument is of incorrect type
*
/

TypedQuery<X> setParameter (int position,
Date wvalue,
TemporalType temporalType);

*

Set the flush mode type to be used for the query execution.
The flush mode type applies to the query regardless of the
flush mode type in use for the entity manager.

@param flushMode

@return the same query instance

X % X o %

*

*/
TypedQuery<X> setFlushMode (FlushModeType flushMode) ;

/

*

Set the lock mode type to be used for the query execution.

@param lockMode

@return the same query instance

@throws IllegalStateException if the query is found not to
be a Java Persistence query language SELECT query
or a CriteriaQuery query

X% ok ok X X

*

*/
TypedQuery<X> setLockMode (LockModeType lockMode) ;

JSR-338 Maintenance Release 141 7/17/17

Oracle

Entity Operations

L S R T . S S S S S . i R R S . D .
*

*

*/

Execute

Java Persistence 2.2, Maintenance Release Query APIs

a SELECT query and return the query results

as a typed java.util.Stream.
By default this method delegates to getResultList () .stream(),

however

persistence provider may choose to override this

method to provide additional capabilities.

@return
@throws

@throws

@throws

@throws

@throws

@throws

a stream of the results

IllegalStateException if called for a Java
Persistence query language UPDATE or DELETE statement
QueryTimeoutException if the query execution exceeds
the query timeout value set and only the statement is
rolled back

TransactionRequiredException if a lock mode other than
NONE has been set and there is no transaction

or the persistence context has not been joined to the
transaction

PessimisticLockException if pessimistic locking

fails and the transaction is rolled back
LockTimeoutException if pessimistic locking

fails and only the statement is rolled back
PersistenceException i1if the query execution exceeds
the query timeout value set and the transaction

is rolled back

default Stream<X> getResultStream() {

}

return

getResultList () .stream() ;

7/17/17

142 JSR-338 Maintenance Release

Oracle

Query APIs Java Persistence 2.2, Maintenance Release Entity Operations

3.10.3 Tuple Interface

package javax.persistence;

import Jjava.util.List;

/**
* Interface for extracting the elements of a query result tuple.
*/
public interface Tuple {

/**
* Get the value of the specified tuple element.
* @param tupleElement tuple element
* @return value of tuple element
* @throws IllegalArgumentException if tuple element
* does not correspond to an element in the
* query result tuple
*/

<X> X get (TupleElement<X> tupleElement) ;

/**
* Get the value of the tuple element to which the
* specified alias has been assigned.
* (@param alias alias assigned to tuple element
* @param type of the tuple element
* @return value of the tuple element
* @throws IllegalArgumentException if alias
* does not correspond to an element in the
* query result tuple or element cannot be
* assigned to the specified type
*/

<X> X get(String alias, Class<X> type);

/**
* Get the value of the tuple element to which the
* gspecified alias has been assigned.
* @param alias alias assigned to tuple element
* @return value of the tuple element

* @throws IllegalArgumentException if alias

* does not correspond to an element in the
* query result tuple

*/

Object get(String alias);

/**

* Get the value of the element at the specified

* position in the result tuple. The first position is O.
* @param i1 position in result tuple
* (@param type type of the tuple element
* @return value of the tuple element
* @throws IllegalArgumentException if i exceeds
* length of result tuple or element cannot be
* assigned to the specified type
*
/

<X> X get(int i, Class<X> type);

JSR-338 Maintenance Release 143 7/17/17

Oracle

Entity Operations

Java Persistence 2.2, Maintenance Release Query APIs

*

Get the value of the element at the specified
position in the result tuple. The first position is O.
@param i position in result tuple
@return value of the tuple element
@throws IllegalArgumentException if i1 exceeds

length of result tuple

X % X ok % X%

*

*/
Object get (int 1i);

/**
* Return the values of the result tuple elements as an array.
* @return tuple element wvalues
*/

Object[] toArray():;

/**
* Return the tuple elements.
* @return tuple elements
*/
List<TupleElement<?>> getElements () ;

3.10.4 TupleElement Interface

package javax.persistence;

* The TupleElement interface defines an element that is returned in
* a query result tuple.
* @param <X> the type of the element

public interface TupleElement<X> ({

/**
* Return the runtime Java type of the tuple element.
* @return the runtime Java type of the tuple element
*/

Class<? extends X> getJavaTypel();

/**

* Return the alias assigned to the tuple element or null,
* if no alias has been assigned.

* @return alias

*/
String getAlias();

7/17/17

144 JSR-338 Maintenance Release

Oracle

Query APIs Java Persistence 2.2, Maintenance Release Entity Operations

3.10.5 Parameter Interface

package javax.persistence;

/**

* Type for query parameter objects.

* @param <T> the type of the parameter
*/

public interface Parameter<T> {

/**
* Return the parameter name, or null if the parameter is
* not a named parameter or no name has been assigned.
* @return parameter name
*/
String getName () ;

/**

* Return the parameter position, or null if the parameter is
* not a positional parameter.

* @return position of parameter

*/

Integer getPosition();

/**

* Return the Java type of the parameter. Values bound to the

* parameter must be assignable to this type.
* This method is required to be supported for criteria queries
* only. Applications that use this method for Java
* Persistence query language queries and native queries will
* not be portable.
* @return the Java type of the parameter
* @throws IllegalStateException if invoked on a parameter
* obtained from a Java persistence query language
* query or native query when the implementation does
* not support this use
*
/

Class<T> getParameterType() ;

JSR-338 Maintenance Release 145 7/17/17

Oracle

Entity Operations Java Persistence 2.2, Maintenance Release Query APIs

3.10.6 StoredProcedureQuery Interface

package Jjavax.persistence;

import Jjava.util.Calendar;
import Jjava.util.Date;
import java.util.List;

/**
* Interface used to control stored procedure query execution.*
*/

public interface StoredProcedureQuery extends Query {

/**

* Set a query property or hint. The hints elements may be used
to specify query properties and hints. Properties defined by
this specification must be observed by the provider.
Vendor-specific hints that are not recognized by a provider
must be silently ignored. Portable applications should not
rely on the standard timeout hint. Depending on the database
in use, this hint may or may not be observed.

@param hintName name of the property or hint

@param value value for the property or hint

@return the same query instance

@throws IllegalArgumentException if the second argument is not
valid for the implementation

bR R R R . S

*

*/

StoredProcedureQuery setHint (String hintName, Object wvalue);

/**
* Bind the value of a Parameter object.
* (@param param parameter object
* @param value parameter value
* @return the same query instance
* @throws IllegalArgumentException if the parameter does not
* correspond to a parameter of the query
*
/
<T> StoredProcedureQuery setParameter (Parameter<T> param,
T value);

Bind an instance of java.util.Calendar to a Parameter object.
@param param parameter object
@param value parameter value
@param temporalType temporal type
@return the same query instance
@throws IllegalArgumentException if the parameter does not
* correspond to a parameter of the query
*
/
StoredProcedureQuery setParameter (Parameter<Calendar> param,
Calendar value,
TemporalType temporalType);

X% X b o X X

71717 146 JSR-338 Maintenance Release

Oracle

Query APIs Java Persistence 2.2, Maintenance Release Entity Operations
/ * *
* Bind an instance of java.util.Date to a Parameter object.
* (@param param parameter object
* @param value parameter value
* (@param temporalType temporal type
* @return the same query instance
* @throws IllegalArgumentException if the parameter does not
* correspond to a parameter of the query
*/

StoredProcedureQuery setParameter (Parameter<Date> param,
Date value,
TemporalType temporalType);

Bind an argument to a named parameter.

@param name parameter name

@param value parameter value

@return the same query instance

@throws IllegalArgumentException if the parameter name does
not correspond to a parameter of the query or if the

* argument is of incorrect type

*

/

StoredProcedureQuery setParameter (String name, Object value);

/**

* Bind an instance of java.util.Calendar to a named parameter.

% Xk ok X X

* (@param name parameter name
* @param value parameter value
* (@param temporalType temporal type
* @return the same query instance
* @throws IllegalArgumentException if the parameter name does
* not correspond to a parameter of the query or if the
* value argument is of incorrect type
*
/

StoredProcedureQuery setParameter (String name,
Calendar value,
TemporalType temporalType);

/**
* Bind an instance of java.util.Date to a named parameter.
* (@param name parameter name
* @param value parameter value
* (@param temporalType temporal type
* @return the same query instance
* @throws IllegalArgumentException if the parameter name does
* not correspond to a parameter of the query or if the
* value argument is of incorrect type
*
/

StoredProcedureQuery setParameter (String name,
Date wvalue,
TemporalType temporalType);

JSR-338 Maintenance Release 147 7/17/17

Oracle

Entity Operations Java Persistence 2.2, Maintenance Release Query APIs
/ * %
* Bind an argument to a positional parameter.
* (@param position position
* @param value parameter value
* @return the same query instance
* @throws IllegalArgumentException if position does not
* correspond to a positional parameter of the query
* or if the argument is of incorrect type
*/
StoredProcedureQuery setParameter (int position, Object value);
/ * *
* Bind an instance of java.util.Calendar to a positional
* parameter.
* (@param position position
* (@param value parameter value
* (@param temporalType temporal type
* @return the same query instance
* @throws IllegalArgumentException if position does not
* correspond to a positional parameter of the query or
* if the value argument is of incorrect type
*/
StoredProcedureQuery setParameter (int position,
Calendar value,
TemporalType temporalType);
/ * %
* Bind an instance of java.util.Date to a positional parameter.
* (@param position position
* @param value parameter value
* (@param temporalType temporal type
* @return the same query instance
* @throws IllegalArgumentException if position does not
* correspond to a positional parameter of the query or
* if the value argument is of incorrect type
*/
StoredProcedureQuery setParameter (int position,
Date wvalue,
TemporalType temporalType);
/ * %
* Set the flush mode type to be used for the query execution.
* The flush mode type applies to the query regardless of the
* flush mode type in use for the entity manager.
* @param flushMode flush mode
* @return the same query instance
*/
StoredProcedureQuery setFlushMode (FlushModeType flushMode) ;
7/17/17 148 JSR-338 Maintenance Release

Oracle

Query APIs Java Persistence 2.2, Maintenance Release Entity Operations

Register a positional parameter.
All positional parameters must be registered.
@param position parameter position
@param type type of the parameter
@param mode parameter mode

* @return the same query instance

*

/
StoredProcedureQuery registerStoredProcedureParameter (
int position,
Class type,
ParameterMode mode) ;

X % X o % %

Register a named parameter.
@param parameterName name of the parameter as registered or
specified in metadata
@param type type of the parameter
@param mode parameter mode
* @return the same query instance
*
/
StoredProcedureQuery registerStoredProcedureParameter (
String parameterName,
Class type,
ParameterMode mode) ;

X% ok o X X

*

Retrieve a value passed back from the procedure through an
INOUT or OUT parameter.
For portability, all results corresponding to result sets
and update counts must be retrieved before the values of
output parameters.
@param position parameter position
@return the result that is passed back through the parameter
@throws IllegalArgumentException if the position does

not correspond to a parameter of the query or is

not an INOUT or OUT parameter

X% X b o X X o o X%

*

*/
Object getOutputParameterValue (int position);

/

*

Retrieve a value passed back from the procedure through an
INOUT or OUT parameter.
For portability, all results corresponding to result sets
and update counts must be retrieved before the values of
output parameters.
@param parameterName name of the parameter as registered or
specified in metadata
@return the result that is passed back through the parameter
@throws IllegalArgumentException if the parameter name does
not correspond to a parameter of the query or is
not an INOUT or OUT parameter

X% X ok ok X X ok o X X

*

*/

Object getOutputParameterValue (String parameterName) ;

JSR-338 Maintenance Release 149 7/17/17

Oracle

Entity Operations

X% ok b X X X o % X%

*

*

Java Persistence 2.2, Maintenance Release Query APIs

*

Return true if the first result corresponds to a result set,

and false if it is an update count or if there are no results

other than through INOUT and OUT parameters, if any.

@return true if first result corresponds to result set

@throws QueryTimeoutException if the query execution exceeds
the query timeout value set and only the statement is
rolled back

@throws PersistenceException if the query execution exceeds
the query timeout value set and the transaction
is rolled back

/

boolean execute();

/*

*

X% b b X X X ok % X X ot

*

*

Return the update count of -1 if there is no pending result or
if the first result is not an update count. The provider
will call execute on the query if needed.
@return the update count or -1 if there is no pending result
or if the next result is not an update count.
@throws TransactionRequiredException if there is
no transaction or the persistence context has not
been joined to the transaction
@throws QueryTimeoutException if the statement execution
exceeds the query timeout value set and only
the statement is rolled back
@throws PersistenceException if the query execution exceeds
the query timeout value set and the transaction
is rolled back

*/

int executeUpdate();

/**

*

bR R R R . S

*

Retrieve the list of results from the next result set.

The provider will call execute on the query if needed.

A REF CURSOR result set, if any, will be retrieved in the

order the REF CURSOR parameter was registered with the query.

@return a list of the results or null is the next item is not

a result set

@throws QueryTimeoutException if the query execution exceeds
the query timeout value set and only the statement is
rolled back

@throws PersistenceException if the query execution exceeds
the query timeout value set and the transaction
is rolled back

*/
List getResultList();

7/17/17

150 JSR-338 Maintenance Release

Oracle

Query APIs Java Persistence 2.2, Maintenance Release Entity Operations

*

Retrieve a single result from the next result set.

The provider will call execute on the query if needed.

A REF CURSOR result set, if any, will be retrieved in the

order the REF CURSOR parameter was registered with the query.

@return the result or null if the next item is not a result set

@throws NoResultException if there is no result in the next
result set

@throws NonUniqueResultException if more than one result

@throws QueryTimeoutException if the query execution exceeds
the query timeout value set and only the statement is
rolled back

@throws PersistenceException if the query execution exceeds
the query timeout value set and the transaction
is rolled back

5% X >k F o X X b o X X ok o

*

*/
Object getSingleResult();

/**

* Return true if the next result corresponds to a result set,
and false if it is an update count or if there are no results
other than through INOUT and OUT parameters, if any.

@return true if next result corresponds to result set

@throws QueryTimeoutException if the query execution exceeds
the query timeout value set and only the statement is
rolled back

@throws PersistenceException if the query execution exceeds
the query timeout value set and the transaction
is rolled back

X% > b X X X o

*

*/

boolean hasMoreResults () ;

/**

* Return the update count or -1 if there is no pending result

or if the next result is not an update count.

@return wupdate count or -1 if there is no pending result or

if the next result is not an update count

@throws QueryTimeoutException if the query execution exceeds
the query timeout value set and only the statement is
rolled back

@throws PersistenceException if the query execution exceeds
the query timeout value set and the transaction
is rolled back

X% X b o X X ot

*

*/
int getUpdateCount () ;

3.10.7 Query Execution

Java Persistence query language, Criteria API, and native SQL select queries are executed using the
getResultList and getSingleResult methods. Update and delete operations (update and
delete “queries”) are executed using the executeUpdate method.

¢ For TypedQuery instances, the query result type is determined in the case of criteria queries
by the type of the query specified when the CriteriaQuery object is created, as described
in section 6.5.1, “CriteriaQuery Creation”. In the case of Java Persistence query language que-

JSR-338 Maintenance Release 151 7/17/17

Oracle

Entity Operations

Java Persistence 2.2, Maintenance Release Query APIs

ries, the type of the result is determined by the resultClass argument to the create-
Query or createNamedQuery method, and the select list of the query must contain only a
single item which must be assignable to the specified type.

e For Query instances, the elements of a query result whose select list consists of more than one
select expression are of type Object []. If the select list consists of only one select expres-
sion, the elements of the query result are of type Object. When native SQL queries are used,
the SQL result set mapping (see section 3.10.16), determines how many items (entities, scalar
values, etc.) are returned. If multiple items are returned, the elements of the query result are of
type Object []. If only a single item is returned as a result of the SQL result set mapping or
if a result class is specified, the elements of the query result are of type Object.

Stored procedure queries can be executed using the getResultList, getSingleResult, and
execute methods. Stored procedures that perform only updates or deletes can be executed using the
executeUpdate method. Stored procedure query execution is described in detail in section
3.10.17.3.

An IllegalArgumentException is thrown if a parameter instance is specified that does not cor-
respond to a parameter of the query, if a parameter name is specified that does not correspond to a
named parameter of the query, if a positional value is specified that does not correspond to a positional
parameter of the query, or if the type of the parameter is not valid for the query. This exception may be
thrown when the parameter is bound, or the execution of the query may fail. See sections 3.10.11,
3.10.12, and 3.10.13 for supported parameter usage.

The effect of applying setMaxResults or setFirstResult to a query involving fetch joins over
collections is undefined. The use of setMaxResults and setFirstResult is not supported for
stored procedure queries.

Query and TypedQuery methods other than the executeUpdate method are not required to be
invoked within a transaction context, unless a lock mode other than LockModeType . NONE has been
specified for the query. In particular, the getResultList and getSingleResult methods are not
required to be invoked within a transaction context unless such a lock mode has been specified for the
query.[53 Mfan entity manager with transaction-scoped persistence context is in use, the resulting enti-
ties will be detached; if an entity manager with an extended persistence context is used, they will be
managed. See Chapter 7 for further discussion of entity manager use outside a transaction and persis-
tence context types.

Whether a StoredProcedureQuery should be invoked in a transaction context should be deter-
mined by the transactional semantics and/or requirements of the stored procedure implementation and
the database in use. In particular, problems may occur if the stored procedure initiates a transaction and
a transaction is already in effect. The state of any entities returned by the stored procedure query invoca-
tion is determined as decribed above.

[53]

A lock mode is specified for a query by means of the setLockMode method or by specifying the lock mode in the Named-
Query annotation.

7/17/17

152 JSR-338 Maintenance Release

Oracle

Query APIs

3.10.7.1

3.10.8

Java Persistence 2.2, Maintenance Release Entity Operations

Runtime exceptions other than the NoResultException, NonUniqueResultException,
QueryTimeoutException, and LockTimeoutException thrown by the methods of the
Query, TypedQuery, and StoredProcedureQuery interfaces other than those methods speci-
fied below cause the current transaction to be marked for rollback if the persistence context is joined to
the transaction. On database platforms on which a query timeout causes transaction rollback, the persis-
tence provider must throw the PersistenceException instead of the QueryTimeoutExcep—
tion.

Runtime exceptions thrown by the following methods of the Query, TypedQuery, and Stored-
ProcedureQuery interfaces do not cause the current transaction to be marked for rollback: get Pa-
rameters, getParameter, getParameterValue, getOutputParameterValue,
getLockMode.

Runtime exceptions thrown by the methods of the Tuple, TupleElement, and Parameter inter-
faces do not cause the current transaction to be marked for rollback.

Example

public List findWithName (String name) {
return em.createQuery (
"SELECT ¢ FROM Customer c¢ WHERE c.name LIKE :custName")
.setParameter ("custName", name)
.setMaxResults (10)
.getResultlList();

Queries and Flush Mode

The flush mode setting affects the result of a query as follows.

When queries are executed within a transaction, if FlushModeType.AUTO is set on the Query,
TypedQuery, or StoredProcedureQuery object, or if the flush mode setting for the persistence
context is AUTO (the default) and a flush mode setting has not been specified for the query object, the
persistence provider is responsible for ensuring that all updates to the state of all entities in the persis-
tence context which could potentially affect the result of the query are visible to the processing of the
query. The persistence provider implementation may achieve this by flushing those entities to the data-
base or by some other means. If FlushModeType . COMMIT is set, the effect of updates made to enti-
ties in the persistence context upon queries is unspecified.

If the persistence context has not been joined to the current transaction, the persistence provider must
not flush to the database regardless of the flush mode setting.

package javax.persistence;

public enum FlushModeType {
COMMIT,
AUTO

}

If there is no transaction active, the persistence provider must not flush to the database.

JSR-338 Maintenance Release 153 7/17/17

Oracle

Entity Operations

3.10.9

Java Persistence 2.2, Maintenance Release Query APIs

Queries and Lock Mode

3.10.10

The setLockMode method of the Query or TypedQuery interface or the 1ockMode element of
the NamedQuery annotation may be used to lock the results of a query. A lock is obtained for each
entity specified in the query result (including entities passed to constructors in the query SELECT
clause).[54]

If the lock mode type is PESSIMISTIC READ, PESSIMISTIC WRITE, or
PESSIMISTIC FORCE_ INCREMENT, and the query returns scalar data (e.g., the values of entity
field or properties, including scalar data passed to constructors in the query SELECT clause), the under-
lying database rows will be locked!*], but the version columns (if any) for any entities corresponding to
such scalar data will not be updated unless the entities themselves are also otherwise retrieved and
updated.

If the lock mode type is OPTIMISTIC or OPTIMISTIC FORCE_ INCREMENT, and the query returns
scalar data, any entities returned by the query will be locked, but no locking will occur for scalar data
that does not correspond to the state of any entity instance in the query result.

If a lock mode other than NONE is specified for a query, the query must be executed within a transaction
(and the persistence context must be joined to the transaction) or the TransactionRequiredEx-
ception will be thrown.

Locking is supported for Java Persistence query language queries and criteria queries only. If the set-
LockMode or getLockMode method is invoked on a query that is not a Java Persistence query lan-
guage select query or a criteria query, the T1legalStateException may be thrown or the query
execution will fail.

Query Hints

The following hint is defined by this specification for use in query configuration.

javax.persistence.query.timeout // time in milliseconds

This hint may be used with the Query, TypedQuery, or StoredProcedureQuery setHint
method or the NamedQuery, NamedNativeQuery, and NamedStoredProcedureQuery
annotations. It may also be passed as a property to the Persistence.createEntityManager-
Factory method and used in the properties element of the persistence.xml file. See sec-
tions 3.10.1, 8.2.1.9, 9.7, 10.4. When used in the createEntityManagerFactory method, the
persistence.xml file, and annotations, the t imeout hint serves as a default value which can be
selectively overridden by use in the setHint method.

Portable applications should not rely on this hint. Depending on the persistence provider and database in
use, the hint may or may not be observed.

[54]
[55]

Note that the setLockMode method may be called more than once (with different values) on a Query or TypedQuery object.

Note that locking will not occur for data passed to aggregate functions. Further, queries involving aggregates with pessimistic
locking may not be supported on all database platforms.

7/17/17

154 JSR-338 Maintenance Release

Oracle

Query APIs

3.10.11

Java Persistence 2.2, Maintenance Release Entity Operations

Vendors are permitted to support the use of additional, vendor-specific hints. Vendor-specific hints
must not use the javax.persistence namespace. Vendor-specific hints must be ignored if they are
not understood.

Parameter Objects

3.10.12

Parameter objects can be used for criteria queries and for Java Persistence query language queries.

Implementations may support the use of Parameter objects for native queries, however support for
Parameter objects with native queries is not required by this specification. The use of Parameter
objects for native queries will not be portable. The mixing of parameter objects with named or posi-
tional parameters is undefined.

Portable applications should not attempt to reuse a Parameter object obtained from a Query or
TypedQuery instance in the context of a different Query or TypedQuery instance.

Named Parameters

3.10.13

Named parameters can be used for Java Persistence query language queries, for criteria queries
(although use of Parameter objects is to be preferred), and for stored procedure queries that support
named parameters.

Named parameters follow the rules for identifiers defined in Section 4.4.1. Named parameters are
case-sensitive. The mixing of named and positional parameters is undefined.

A named parameter of a Java Persistence query language query is an identifier that is prefixed by the
":" symbol. The parameter names passed to the setParameter methods of the Query and

n,on

TypedQuery interfaces do not include this " : " prefix.

Positional Parameters

3.10.14

Only positional parameter binding and positional access to result items may be portably used for native
queries, except for stored procedure queries for which named parameters have been defined. When
binding the values of positional parameters, the numbering starts as “1”. It is assumed that for native
queries the parameters themselves use the SQL syntax (i.e., “?”, rather than “?21”).

The use of positional parameters is not supported for criteria queries.

Named Queries

Named queries are static queries expressed in metadata or queries registered by means of the Entity-
ManagerFactory addNamedQuery method. Named queries can be defined in the Java Persistence
query language or in SQL. Query names are scoped to the persistence unit.

JSR-338 Maintenance Release 155 7/17/17

Oracle

Entity Operations

3.10.15

Java Persistence 2.2, Maintenance Release Query APIs

The following is an example of the definition of a named query defined in metadata:

@NamedQuery (

name="findAllCustomersWithName",

query="SELECT c¢c FROM Customer c¢ WHERE c.name LIKE :custName"
)

The following is an example of the use of a named query:

@PersistenceContext
public EntityManager em;

customers = em.createNamedQuery ("findAllCustomersWithName")

.setParameter ("custName", "Smith")
.getResultList () ;

Polymorphic Queries

3.10.16

By default, all queries are polymorphic. That is, the FROM clause of a query designates not only
instances of the specific entity class(es) to which it explicitly refers, but subclasses as well. The
instances returned by a query include instances of the subclasses that satisfy the query conditions.

For example, the following query returns the average salary of all employees, including subtypes of
Employee, such as Manager and Exempt.

select avg(e.salary) from Employee e where e.salary > 80000

Entity type expressions, described in section 4.6.17.5, as well as the use of downcasting, described in
section 4.4.9, can be used to restrict query polymorphism.

SQL Queries

3.10.16.1

Queries may be expressed in native SQL. The result of a native SQL query may consist of entities,
unmanaged instances created via constructors, scalar values, or some combination of these.

The SQL query facility is intended to provide support for those cases where it is necessary to
use the native SOL of the target database in use (and/or where the Java Persistence query lan-
guage cannot be used). Native SOL queries are not expected to be portable across databases.

Returning Managed Entities from Native Queries

The persistence provider is responsible for performing the mapping between the values returned by the
SQL query and entity attributes in accordance with the object/relational mapping metadata for the entity
or entities. In particular, the names of the columns in the SQL result are used to map to the entity
attributes as defined by this metadata. This mapping includes the mapping of the attributes of any
embeddable classes that are part of the non-collection-valued entity state and attributes corresponding to
foreign keys contained as part of the entity statel>],

[56] Support for joins is currently limited to single-valued relationships that are mapped directly—i.e., not via join tables.

7/17/17

156 JSR-338 Maintenance Release

Oracle

Query APIs

Java Persistence 2.2, Maintenance Release Entity Operations

When an entity is to be returned from a native query, the SQL statement should select all of the columns
that are mapped to the entity object. This should include foreign key columns to related entities. The
results obtained when insufficient data is available are undefined.

In the simplest case—i.e., when the results of the query are limited to entities of a single entity class and
the mapping information can be derived from the columns of the SQL result and the object/relational
mapping metadata—it is sufficient to specify only the expected class of the entity result.

The following example illustrates the case where a native SQL query is created dynamically using the
createNativeQuery method and the entity class that specifies the type of the result is passed in as
an argument.

Query g = em.createNativeQuery (
"SELECT o.id, o.quantity, o.item " +
"FROM Order o, Item 1 " +
"WHERE (o.item = i.id) AND (i.name = 'widget')",
com.acme.Order.class) ;

When executed, this query will return a collection of all Order entities for items named “widget”.

The SglResultSetMapping metadata annotation—which is designed to handle more complex
cases—can be used as an alternative here. See section 10.4.4 for the definition of the SglResult-
SetMapping metadata annotation and related annotations.

For the query shown above, the Sg1ResultSetMapping metadata for the query result type might be
specified as follows:

@SglResultSetMapping (
name="WidgetOrderResults",
entities=@EntityResult (entityClass=com.acme.Order.class))

The same results as produced by the query above can then obtained by the following:

Query g = em.createNativeQuery (
"SELECT o.id, o.quantity, o.item " +
"FROM Order o, Item i " +
"WHERE (o.item = i.id) AND (i.name = 'widget')",
"WidgetOrderResults") ;

When multiple entities are returned by a SQL query or when the column names of the SQL result do not
correspond to those of the object/relational mapping metadata, a SqglResultSetMapping metadata
definition must be provided to specify the entity mapping.

JSR-338 Maintenance Release 157 7/17/17

Oracle

Entity Operations

Java Persistence 2.2, Maintenance Release Query APIs

The following query and SqlResultSetMapping metadata illustrates the return of multiple entity
types. It assumes default metadata and column name defaults.

Query g = em.createNativeQuery (
"SELECT o.id, o.quantity, o.item, i.id, i.name, i.description "+
"FROM Order o, Item i " +
"WHERE (o.quantity > 25) AND (o.item = i.id)",
"OrderItemResults") ;

@SglResultSetMapping (name="0OrderItemResults",
entities={
@EntityResult (entityClass=com.acme.Order.class),
@EntityResult (entityClass=com.acme.Item.class)

})

When the column names of the SQL result do not correspond to those of the object/relational mapping
metadata, more explicit SQL result mapping metadata must be provided to enable the persistence pro-
vider runtime to map the JDBC results into the expected objects. This might arise, for example, when
column aliases must be used in the SQL SELECT clause when the SQL result would otherwise contain
multiple columns of the same name or when columns in the SQL result are the results of operators or
functions. The FieldResult annotation element within the EntityResult annotation is used to
specify the mapping of such columns to entity attributes.

The following example combining multiple entity types includes aliases in the SQL statement. This
requires that the column names be explicitly mapped to the entity fields corresponding to those col-
umns. The FieldResult annotation is used for this purpose.

Query g = em.createNativeQuery (
"SELECT o.id AS order id, " +
"o.quantity AS order guantity, " +
"o.item AS order item, " +
"i.id, i.name, i.description " +
"FROM Order o, Item 1 " +
"WHERE (order quantity > 25) AND (order item = i.id)",
"OrderItemResults") ;

@SglResultSetMapping (name="OrderItemResults",
entities={

@EntityResult (entityClass=com.acme.Order.class, fields={
@FieldResult (name="id", column="order id"),
@FieldResult (name="quantity", column="order quantity"),
@FieldResult (name="item", column="order item")}),

@EntityResult (entityClass=com.acme.Iltem.class)

})

When the returned entity type contains an embeddable class, the FieldResult element must use a
dot (“.”) notation to indicate which column maps to which field or property of the contained
embeddable.

7/17/17

158 JSR-338 Maintenance Release

Oracle

Query APIs Java Persistence 2.2, Maintenance Release Entity Operations

Example:

Query g = em.createNativeQuery (
"SELECT c.id AS customer id, " +

"c.street AS customer street, " +
"c.city AS customer city, " +
"c.state AS customer state, " +
"c.status AS customer status " +
"FROM Customer c " +
"WHERE c.status = 'GOLD' " ,
"CustomerResults");

@SglResultSetMapping (name="CustomerResults”,
entities=/{
@EntityResult (entityClass=com.acme.Customer.class,
fields={

@FieldResult (name="id",
column="customer id"),

@FieldResult (name="address.street",
column="customer street"),

@FieldResult (name="address.city",
column="customer city"),

@FieldResult (name="address.state",
column="customer state"),

@FieldResult (name="status",
column="customer status")})

P

When the returned entity type is the owner of a single-valued relationship and the foreign key is a com-
posite foreign key (composed of multiple columns), a FieldResult element should be used for each
of the foreign key columns. The FieldResult element must use the dot (“.”) notation form to indi-
cate the column that maps to each property or field of the target entity primary key.

If the target entity has a primary key of type IdClass, this specification takes the form of the name of
the field or property for the relationship, followed by a dot (. ”), followed by the name of the field or
property of the primary key in the target entity. The latter will be annotated with Id, as specified in sec-
tion 11.1.22.

Example:

Query g = em.createNativeQuery (

"SELECT o.id AS order_ id, " +
"o.quantity AS order quantity, " +
"o.item id AS order item id, " +
"o.item name AS order item name, " +
"i.id, i.name, i.description " +

"FROM Order o, Item i " +

"WHERE (order quantity > 25) AND (order item id = i.id) " +

"AND (order item name = i.name)",

"OrderItemResults") ;

JSR-338 Maintenance Release 159 7/17/17

Oracle

Entity Operations Java Persistence 2.2, Maintenance Release Query APIs

@SglResultSetMapping (name="OrderItemResults",
entities={

@EntityResult (entityClass=com.acme.Order.class, fields={
@FieldResult (name="id", column="order id"),
@FieldResult (name="quantity", column="order quantity"),
@FieldResult (name="item.id", column="order item id")}),
@FieldResult (name="item.name",

column="order item name")}),

@EntityResult (entityClass=com.acme.Iltem.class)

})

If the target entity has a primary key of type EmbeddedId, this specification is composed of the name
of the field or property for the relationship, followed by a dot (“. "), followed by the name or the field or
property of the primary key (i.e., the name of the field or property annotated as EmbeddedId), fol-
lowed by the name of the corresponding field or property of the embedded primary key class.

Example:

Query g = em.createNativeQuery (
"SELECT o.id AS order_ id, " +
"o.quantity AS order quantity, " +

"o.item id AS order item id, " +
"o.item name AS order item name, " +
"i.id, i.name, i.description " +

"FROM Order o, Item 1 " +
"WHERE (order quantity > 25) AND (order item id = i.id) AND
(order item name = i.name)",
"OrderItemResults");

@SglResultSetMapping (name="0OrderItemResults",
entities={

@EntityResult (entityClass=com.acme.Order.class, fields={
@FieldResult (name="id", column="order id"),
@FieldResult (name="quantity", column="order quantity"),
@FieldResult (name="item.itemPk.id",

column="order item id")}),
@FieldResult (name="item.itemPk.name",
column="order item name")}),

@EntityResult (entityClass=com.acme.Item.class)

})

The FieldResult elements for the composite foreign key are combined to form the primary key
EmbeddedId class for the target entity. This may then be used to subsequently retrieve the entity if
the relationship is to be eagerly loaded.

The dot-notation form is not required to be supported for any usage other than for embeddables, com-
posite foreign keys, or composite primary keys.

3.10.16.2 Returning Unmanaged Instances

Instances of other classes (including non-managed entity instances) as well as scalar results can be
returned by a native query. These can be used singly, or in combination, including with entity results.

71717 160 JSR-338 Maintenance Release

Oracle

Query APIs Java Persistence 2.2, Maintenance Release Entity Operations

3.10.16.2.1 Scalar Results
Scalar results can be included in the query result by specifying the ColumnResult annotation ele-
ment of the SglResultSetMapping annotation. The intended type of the result can be specified
using the type element of the ColumnResult annotation.

Query g = em.createNativeQuery (
"SELECT o.id AS order id, " +
"o.quantity AS order gquantity, " +

"o.item AS order item, " +
"i.name AS item name, " +
"i.availabilityDate AS item shipdate " +

"FROM Order o, Item i " +
"WHERE (order quantity > 25) AND (order item = i.id)",
"OrderResults") ;

@SglResultSetMapping (name="OrderResults",
entities={

@EntityResult (entityClass=com.acme.Order.class, fields={
@FieldResult (name="id", column="order id"),
@FieldResult (name="quantity", column="order quantity"),
@FieldResult (name="item", column="order item")})},

columns={

@ColumnResult (name="item name"),

@ColumnResult (name="item shipdate",

type=java.util.Date.class) }

3.10.16.2.2 Constructor Results

The mapping to constructors is specified using the ConstructorResult annotation element of the
SglResultSetMapping annotation. The targetClass element of the ConstructorResult
annotation specifies the class whose constructor corresponds to the specified columns. All columns cor-
responding to arguments of the intended constructor must be specified using the columns element of
the ConstructorResult annotation in the same order as that of the argument list of the constructor.
Any entities returned as constructor results will be in either the new or the detached state, depending on
whether a primary key is retrieved for the constructed object.

JSR-338 Maintenance Release 161 7/17/17

Oracle

Entity Operations

3.10.16.3

3.10.16.4

3.10.17

Java Persistence 2.2, Maintenance Release Query APIs

Example:

Query g = em.createNativeQuery (
"SELECT c.id, c.name, COUNT (o) as orderCount, AVG(o.price) AS
avgOrder " +
"FROM Customer c¢, Orders o " +
"WHERE o.cid = c.id " +
"GROUP BY c.id, c.name",
"CustomerDetailsResult") ;

@SglResultSetMapping (name="CustomerDetailsResult",
classes=/{
@ConstructorResult (targetClass=com.acme.CustomerDetails.class,
columns={

@ColumnResult (name="1id"),
@ColumnResult (name="name"),
@ColumnResult (name="orderCount"),
@ColumnResult (name="avgOrder", type=Double.class)})

})

Combinations of Result Types

When a SglResultSetMapping specifies more than one mapping type (i.e., more than one of
EntityResult, ConstructorResult, ColumnResult), then for each row in the SQL result,
the query execution will result in an Object [] instance whose elements are as follows, in order: any
entity results (in the order in which they are defined in the entities element); any instances of
classes corresponding to constructor results (in the order defined in the classes element); and any
instances corresponding to column results (in the order defined in the columns element). If there are
any columns whose result mappings have not been specified, they are ignored.

Restrictions

When an entity is being returned, the SQL statement should select all of the columns that are mapped to
the entity object. This should include foreign key columns to related entities. The results obtained
when insufficient data is available are undefined. A SQL result set mapping must not be used to map
results to the non-persistent state of an entity.

The use of named parameters is not defined for native SQL queries. Only positional parameter binding
for SQL queries may be used by portable applications.

Stored Procedures

The StoredProcedureQuery interface supports the use of database stored procedures.

Stored procedures can be specified either by means of the NamedStoredProcedureQuery annota-
tion or dynamically. Annotations for the specification of stored procedures are described in section
10.4.3.

7/17/17

162 JSR-338 Maintenance Release

Oracle

Query APIs

3.10.17.1

3.10.17.2

3.10.17.3

Java Persistence 2.2, Maintenance Release Entity Operations

Named Stored Procedure Queries

Unlike in the case of a named native query, the NamedStoredProcedureQuery annotation names
a stored procedure that exists in the database rather than providing a stored procedure definition. The
NamedStoredProcedureQuery annotation specifies the types of all parameters to the stored pro-
cedure, their corresponding parameter modes (IN, OUT, INOUT, REF_CURSOR[57]), and how result
sets, if any, are to be mapped. The name that is assigned to the stored procedure in the Named-
StoredProcedureQuery annotation is passed as an argument to the createNamedStored-
ProcedureQuery method to create an executable StoredProcedureQuery object.

A stored procedure may return more than one result set. As with native queries, the mapping of result
sets can be specified either in terms of a resultClasses or as a resultSetMappings annota-
tion element. If there are multiple result sets, it is assumed that they will be mapped using the same
mechanism — e.g., all via a set of result class mappings or all via a set of result set mappings. The
order of the specification of these mappings must be the same as the order in which the result sets will
be returned by the stored procedure invocation. If the stored procedure returns one or more result sets
and no resultClasses or resultSetMappings element has been specified, any result set will
be returned as a list of type Object []. The combining of different strategies for the mapping of
stored procedure result sets is undefined.

StoredProcedureParameter metadata needs to be provided for all parameters. Parameters must
be specified in the order in which they occur in the parameter list of the stored procedure. If parameter
names are used, the parameter name is used to bind the parameter value and to extract the output value
(if the parameter is an INOUT or OUT parameter). If parameter names are not specified, it is assumed
that positional parameters are used. The mixing of named and positional parameters is undefined.

Dynamically-specified Stored Procedure Queries
If the stored procedure is not defined using metadata, parameter and result set information must be pro-
vided dynamically.

All parameters of a dynamically-specified stored procedure query must be registered using the regis-
terStoredProcedureParameter method of the StoredProcedureQuery interface.

Result set mapping information can be provided by means of the createStoredProcedure-
Query method.

Stored Procedure Query Execution
Stored procedure query execution can be controlled as described below.

The setParameter methods are used to set the values of all required IN and INOUT parameters. It
is not required to set the values of stored procedure parameters for which default values have been
defined by the stored procedure.

When getResultList and getSingleResult are called on a StoredProcedureQuery
object, the persistence provider will call execute on an unexecuted stored procedure query before
processing getResultList or getSingleResult.

[57] Note that REF_CURSOR parameters are used by some databases to return result sets from stored procedures.

JSR-338 Maintenance Release 163 7/17/17

Oracle

Entity Operations

3.11

Java Persistence 2.2, Maintenance Release Summary of Exceptions

When executeUpdate is called on a StoredProcedureQuery object, the persistence provider
will call execute on an unexecuted stored procedure query followed by getUpdateCount. The
results of executeUpdate will be those of getUpdateCount.

The execute method supports both the simple case where scalar results are passed back only via
INOUT and OUT parameters as well as the most general case (multiple result sets and/or update counts,
possibly also in combination with output parameter values).

The execute method returns true if the first result is a result set, and false if it is an update count
or there are no results other than through INOUT and OUT parameters, if any.

If the execute method returns true, the pending result set can be obtained by calling getRe-
sultList or getSingleResult. The hasMoreResults method can then be used to test for
further results.

If execute or hasMoreResults returns false, the getUpdateCount method can be called to
obtain the pending result if it is an update count. The getUpdateCount method will return either the
update count (zero or greater) or -1 if there is no update count (i.e., either the next result is a result set or
there is no next update count).

For portability, results that correspond to JDBC result sets and update counts need to be processed
before the values of any INOUT or OUT parameters are extracted.

After results returned through getResultList and getUpdateCount have been exhausted,
results returned through INOUT and OUT parameters can be retrieved.

The getOutputParameterValue methods are used to retrieve the values passed back from the
procedure through INOUT and OUT parameters.

When using REF_CURSOR parameters for result sets, the update counts should be exhausted before
calling getResultList to retrieve the result set. Alternatively, the REF _CURSOR result set can be
retrieved through getOutputParametervValue. Result set mappings will be applied to results cor-
responding to REF_CURSOR parameters in the order the REF CURSOR parameters were registered
with the query.

In the simplest case, where results are returned only via INOUT and OUT parameters, execute can be
followed immediately by calls to getOutputParameterValue.

Summary of Exceptions

The following is a summary of the exceptions defined by this specification:
PersistenceException
The PersistenceException is thrown by the persistence provider when a problem

occurs. It may be thrown to report that the invoked operation could not complete because of an
unexpected error (e.g., failure of the persistence provider to open a database connection).

7/17/17

164 JSR-338 Maintenance Release

Oracle

Summary of Exceptions Java Persistence 2.2, Maintenance Release Entity Operations

All other exceptions defined by this specification are subclasses of the PersistenceEx-
ception. All instances of PersistenceException except for instances of NoRe-
sultException, NonUniqueResultException, LockTimeoutException, and
QueryTimeoutException will cause the current transaction, if one is active and the per-
sistence context has been joined to it, to be marked for rollback.

TransactionRequiredException

The TransactionRequiredException is thrown by the persistence provider when a
transaction is required but is not active.

OptimisticLockException

The OptimisticLockException is thrown by the persistence provider when an optimis-
tic locking conflict occurs. This exception may be thrown as part of an API call, at flush, or at
commit time. The current transaction, if one is active, will be marked for rollback.

PessimisticLockException

The PessimisticLockException is thrown by the persistence provider when a pessi-
mistic locking conflict occurs. The current transaction will be marked for rollback. Typically
the PessimisticLockException occurs because the database transaction has been
rolled back due to deadlock or because the database uses transaction-level rollback when a pes-
simistic lock cannot be granted.

LockTimeoutException

The LockTimeoutException is thrown by the persistence provider when a pessimistic
locking conflict occurs that does not result in transaction rollback. Typically this occurs
because the database uses statement-level rollback when a pessimistic lock cannot be granted
(and there is no deadlock). The LockTimeoutException does not cause the current trans-
action to be marked for rollback.

RollbackException

The RollbackException is thrown by the persistence provider when EntityTrans-
action.commit fails.

EntityExistsException

The EntityExistsException may thrown by the persistence provider when the per-
sist operation is invoked and the entity already exists. The EntityExistsException
may be thrown when the persist operation is invoked, or the EntityExistsException or
another PersistenceException may be thrown at commit time. The current transaction,
if one is active and the persistence context has been joined to it, will be marked for rollback.

EntityNotFoundException

The EntityNotFoundException is thrown by the persistence provider when an entity
reference obtained by getReference is accessed but the entity does not exist. It is thrown

JSR-338 Maintenance Release 165 7/17/17

Oracle

Entity Operations

Java Persistence 2.2, Maintenance Release Summary of Exceptions

by the refresh operation when the entity no longer exists in the database. It is also thrown
by the 1ock operation when pessimistic locking is used and the entity no longer exists in the
database. The current transaction, if one is active and the persistence context has been joined to
it, will be marked for rollback.

NoResultException

The NoResultException is thrown by the persistence provider when Query.getSin-
gleResult or TypedQuery.getSingleResult is invoked and there is no result to
return. This exception will not cause the current transaction, if one is active, to be marked for
rollback.

NonUniqueResultException

The NonUniqueResultException 1is thrown by the persistence provider when
Query.getSingleResult or TypedQuery.getSingleResult isinvoked and there
is more than one result from the query. This exception will not cause the current transaction, if
one is active, to be marked for rollback.

QueryTimeoutException

The QueryTimeoutException is thrown by the persistence provider when a query times
out and only the statement is rolled back. The QueryTimeoutException does not cause
the current transaction, if one is active, to be marked for rollback.

7/17/17

166 JSR-338 Maintenance Release

Oracle

Overview

Chapter 4

4.1

Java Persistence 2.2, Maintenance Release Query Language

Query Language

The Java Persistence query language is a string-based query language used to define queries over enti-
ties and their persistent state. It enables the application developer to specify the semantics of queries in
a portable way, independent of the particular database schema in use in an enterprise environment. The
full range of the language may be used in both static and dynamic queries.

This chapter provides the full definition of the Java Persistence query language.

Overview

The Java Persistence query language is a query specification language for string-based dynamic queries
and static queries expressed through metadata. It is used to define queries over the persistent entities
defined by this specification and their persistent state and relationships.

The Java Persistence query language can be compiled to a target language, such as SQL, of a database
or other persistent store. This allows the execution of queries to be shifted to the native language facili-
ties provided by the database, instead of requiring queries to be executed on the runtime representation
of the entity state. As a result, query methods can be optimizable as well as portable.

JSR-338 Maintenance Release 167 7/17/17

Oracle

Query Language

4.2

Java Persistence 2.2, Maintenance Release Statement Types

The query language uses the abstract persistence schema of entities, including their embedded objects
and relationships, for its data model, and it defines operators and expressions based on this data model.
It uses a SQL-like syntax to select objects or values based on abstract schema types and relationships. It
is possible to parse and validate queries before entities are deployed.

The term abstract persistence schema refers to the persistent schema abstraction (persistent
entities, their state, and their relationships) over which Java Persistence queries operate.
Queries over this persistent schema abstraction are translated into queries that are executed
over the database schema to which entities are mapped.

Queries may be defined in metadata annotations or the XML descriptor. The abstract schema types of a
set of entities can be used in a query if the entities are defined in the same persistence unit as the query.

Path expressions allow for navigation over relationships defined in the persistence unit.

A persistence unit defines the set of all classes that are related or grouped by the application
and which must be colocated in their mapping to a single database.

Statement Types

4.2.1

A Java Persistence query language statement may be either a select statement, an update statement, or a
delete statement.

This chapter refers to all such statements as “queries”. Where it is important to distinguish
among statement types, the specific statement type is referenced.

In BNF syntax, a query language statement is defined as:
QL_statement :: = select_statement | update_statement | delete_statement

Any Java Persistence query language statement may be constructed dynamically or may be statically
defined in a metadata annotation or XML descriptor element.

All statement types may have parameters.

Select Statements

A select statement is a string which consists of the following clauses:
e a SELECT clause, which determines the type of the objects or values to be selected.

¢ a FROM clause, which provides declarations that designate the domain to which the expres-
sions specified in the other clauses of the query apply.

¢ an optional WHERE clause, which may be used to restrict the results that are returned by the
query.

7/17/17

168 JSR-338 Maintenance Release

Oracle

Abstract Schema Types and Query Domains Java Persistence 2.2, Maintenance Release Query Language

4.2.2

e an optional GROUP BY clause, which allows query results to be aggregated in terms of
groups.

¢ an optional HAVING clause, which allows filtering over aggregated groups.

¢ an optional ORDER BY clause, which may be used to order the results that are returned by the
query.

In BNF syntax, a select statement is defined as:

select_statement :: = select_clause from_clause [where _clause] [groupby_clause]
[having_clause] [orderby clause]

A select statement must always have a SELECT and a FROM clause. The square brackets [] indicate
that the other clauses are optional.

Update and Delete Statements

4.3

Update and delete statements provide bulk operations over sets of entities.
In BNF syntax, these operations are defined as:

update_statement :: = update_clause [where clause]

delete _statement :: = delete_clause [where_clause]

The update and delete clauses determine the type of the entities to be updated or deleted. The WHERE
clause may be used to restrict the scope of the update or delete operation.

Update and delete statements are described further in Section 4.10.

Abstract Schema Types and Query Domains

The Java Persistence query language is a typed language, and every expression has a type. The type of
an expression is derived from the structure of the expression, the abstract schema types of the identifica-
tion variable declarations, the types to which the persistent attributes evaluate, and the types of literals.

The abstract schema type of an entity or embeddable is derived from its class and the metadata informa-
tion provided by Java language annotations or in the XML descriptor.

Informally, the abstract schema type of an entity or embeddable can be characterized as follows:
e For every non-relationship persistent field or get accessor method (for a persistent property)

of the class, there is a field (“state field”) whose abstract schema type corresponds to that of
the field or the result type of the accessor method.

JSR-338 Maintenance Release 169 7/17/17

Oracle

Query Language

4.3.1

Java Persistence 2.2, Maintenance Release Abstract Schema Types and Query Domains

e For every persistent relationship field or get accessor method (for a persistent relationship
property) of the class, there is a field (“association field”) whose type is the abstract schema
type of the related entity (or, if the relationship is a one-to-many or many-to-many, a collection
of such).

Abstract schema types are specific to the query language data model. The persistence provider is not
required to implement or otherwise materialize an abstract schema type.

The domain of a query consists of the abstract schema types of all entities and embeddables that are
defined in the same persistence unit.

The domain of a query may be restricted by the navigability of the relationships of the entity and associ-
ated embeddable classes on which it is based. The association fields of an entity’s or embeddable’s
abstract schema type determine navigability. Using the association fields and their values, a query can
select related entities and use their abstract schema types in the query.

Naming

4.3.2

Entities are designated in query strings by their entity names. The entity name is defined by the name
element of the Ent ity annotation (or the entity-name XML descriptor element), and defaults to
the unqualified name of the entity class. Entity names are scoped within the persistence unit and must be
unique within the persistence unit.

Example

This example assumes that the application developer provides several entity classes, representing
orders, products, and line items, and an embeddable address class representing shipping addresses and
billing addresses. The abstract schema types for the entities are Order, Product, and LineItem
respectively. There is a one-to-many relationship between Order and LineItem. The entity
LineItemis related to Product in a many-to-one relationship. The classes are logically in the same
persistence unit, as shown in Figure 1.

Queries to select orders can be defined by navigating over the association fields and state fields defined
by Order and LineItem. A query to find all orders with pending line items might be written as fol-
lows:

SELECT DISTINCT o
FROM Order AS o JOIN o.linelItems AS 1
WHERE 1.shipped = FALSE

7/17/17

170 JSR-338 Maintenance Release

Oracle

Abstract Schema Types and Query Domains Java Persistence 2.2, Maintenance Release Query Language

Figure 1

Abstract Persistence Schema of Several Entities with Defined in the Same Persistence Unit.

Shipping Billing
Address Address

This query navigates over the association field 1ineItems of the abstract schema type Order to find
line items, and uses the state field shipped of LineItem to select those orders that have at least one
line item that has not yet shipped. (Note that this query does not select orders that have no line items.)

Although reserved identifiers, such as DISTINCT, FROM, AS, JOIN, WHERE, and FALSE appear in
upper case in this example, reserved identifiers are case insensitive.[*8!

The SELECT clause of this example designates the return type of this query to be of type Order.

Because the same persistence unit defines the abstract persistence schema of the related entities, the
developer can also specify a query over orders that utilizes the abstract schema type for products, and
hence the state fields and association fields of both the abstract schema types Order and Product.
For example, if the abstract schema type Product has a state field named productType, a query
over orders can be specified using this state field. Such a query might be to find all orders for products
with product type office supplies. A query for this might be as follows.

SELECT DISTINCT o
FROM Order o JOIN o.linelItems 1 JOIN l.product p
WHERE p.productType = ‘office supplies’

Because Order is related to Product by means of the relationships between Order and LineItem
and between LineItem and Product, navigation using the association fields 1ineItems and
product is used to express the query. This query is specified by using the entity name Order, which
designates the abstract schema type over which the query ranges. The basis for the navigation is pro-
vided by the association fields 1ineItems and product of the abstract schema types Order and
LineItem respectively.

[58] This chapter uses the convention that reserved identifiers appear in upper case in the examples and BNF for the language.

JSR-338 Maintenance Release 171 7/17/17

Oracle

Query Language

4.4

Java Persistence 2.2, Maintenance Release The FROM Clause and Navigational Declara-

The FROM Clause and Navigational Declarations

4.4.1

The FROM clause of a query defines the domain of the query by declaring identification variables. An
identification variable is an identifier declared in the FROM clause of a query. The domain of the query
may be constrained by path expressions. (See section 4.4.4.)

Identification variables designate instances of a particular abstract schema type. The FROM clause can
contain multiple identification variable declarations separated by a comma (,).

from_clause ::=

FROM identification variable_declaration

{, {identification_variable _declaration | collection_member_declaration}}*
identification_variable_declaration ::= range_variable _declaration { join | fetch_join }*
range_variable_declaration ::= entity_name [AS] identification _variable
jJoin ::= join_spec join_association_path_expression [AS] identification_variable
[join_condition]

fetch_join ::= join_spec FETCH join_association_path_expression
Join_association_path_expression ::=

jJoin_collection_valued_path_expression |

jJoin_single_valued_path _expression |

TREAT(join_collection_valued_path_expression AS subtype) |

TREAT(join_single_valued_path_expression AS subtype)
jJoin_collection_valued_path_expression::=

identification_variable.{single_valued _embeddable_object field.}*collection valued_field
join_single_valued_path_expression::=
identification_variable.{single_valued_embeddable_object field.}*single _valued_object_field

join_spec ::= [LEFT [OUTER] | INNER] JOIN
Join_condition ::= ON conditional _expression
collection_member_declaration ::=

IN (collection_valued_path_expression) [AS] identification_variable

The following subsections discuss the constructs used in the FROM clause.

Identifiers

An identifier is a character sequence of unlimited length. The character sequence must begin with a Java
identifier start character, and all other characters must be Java identifier part characters. An identifier
start character is any character for which the method Character.isJavaldentifierStart
returns true. This includes the underscore (_) character and the dollar sign ($) character. An identifier
part character is any character for which the method Character.isJavaldentifierPart
returns true. The question mark (?) character is reserved for use by the Java Persistence query language.

7/17/17

1 72 JSR-338 Maintenance Release

Oracle

The FROM Clause and Navigational DeclarationsJava Persistence 2.2, Maintenance Release Query Language

4.4.2

The following are reserved identifiers: ABS, ALL, AND, ANY, AS, ASC, AVG, BETWEEN,
BIT_LENGTH*’l, BOTH, BY, CASE, CHAR LENGTH, CHARACTER LENGTH, CLASS, COA-
LESCE, CONCAT, COUNT, CURRENT DATE, CURRENT TIME, CURRENT TIMESTAMP,
DELETE, DESC, DISTINCT, ELSE, EMPTY, END, ENTRY, ESCAPE, EXISTS, FALSE, FETCH,
FROM, FUNCTION, GROUP, HAVING, IN, INDEX, INNER, IS, JOIN, KEY, LEADING, LEFT,
LENGTH, LIKE, LOCATE, LOWER, MAX, MEMBER, MIN, MOD, NEW, NOT, NULL, NULLIF,
OBJECT, OF, ON, OR, ORDER, OUTER, POSITION, SELECT, SET, SIZE, SOME, SQRT, SUB-
STRING, SUM, THEN, TRAILING, TREAT, TRIM, TRUE, TYPE, UNKNOWN, UPDATE, UPPER,
VALUE, WHEN, WHERE.

Reserved identifiers are case insensitive. Reserved identifiers must not be used as identification vari-
ables or result variables (see section 4.8).

1t is recommended that SQL key words other than those listed above not be used as identifica-

tion variables in queries because they may be used as reserved identifiers in future releases of
this specification.

Identification Variables

An identification variable is a valid identifier declared in the FROM clause of a query.

All identification variables must be declared in the FROM clause. Identification variables cannot be
declared in other clauses.

An identification variable must not be a reserved identifier or have the same name as any entity in the
same persistence unit.

Identification variables are case insensitive.

An identification variable evaluates to a value of the type of the expression used in declaring the vari-
able. For example, consider the previous query:

SELECT DISTINCT o
FROM Order o JOIN o.lineltems 1 JOIN l.product p
WHERE p.productType = ‘office supplies’

In the FROM clause declaration o.lineItems 1, the identification variable 1 evaluates to any
LineItem value directly reachable from Order. The association field 1ineItemns is a collection of
instances of the abstract schema type LineItem and the identification variable 1 refers to an element
of this collection. The type of 1 is the abstract schema type of LineItem.

An identification variable can range over an entity, embeddable, or basic abstract schema type. An iden-
tification variable designates an instance of an abstract schema type or an element of a collection of
abstract schema type instances.

[59]

BIT_LENGTH, CHAR_LENGTH, CHARACTER_LENGTH, POSITION, and UNKNOWN are not currently used: they are
reserved for future use.

JSR-338 Maintenance Release 173 7/17/17

Oracle

Query Language

4.4.3

Java Persistence 2.2, Maintenance Release The FROM Clause and Navigational Declara-

Note that for identification variables referring to an instance of an association or collection represented
asa java.util.Map, the identification variable is of the abstract schema type of the map value.

An identification variable always designates a reference to a single value. It is declared in one of three
ways: in a range variable declaration, in a join clause, or in a collection member declaration. The identi-
fication variable declarations are evaluated from left to right in the FROM clause, and an identification
variable declaration can use the result of a preceding identification variable declaration of the query
string.

All identification variables used in the SELECT, WHERE, ORDER BY, GROUP BY, or HAVING
clause of a SELECT or DELETE statement must be declared in the FROM clause. The identification
variables used in the WHERE clause of an UPDATE statement must be declared in the UPDATE clause.

Identification variables are existentially quantified in these clauses. This means that an identification
variable represents a member of a collection or an instance of an entity’s abstract schema type. An iden-

tification variable never designates a collection in its entirety.

An identification variable is scoped to the query (or subquery) in which it is defined and is also visible
to any subqueries within that query scope that do not define an identification variable of the same name.

Range Variable Declarations

The syntax for declaring an identification variable as a range variable is similar to that of SQL; option-
ally, it uses the AS keyword. A range variable designates an entity abstract schema type.[60]

range_variable_declaration ::= entity_name [AS] identification _variable

Range variable declarations allow the developer to designate a “root” for objects which may not be
reachable by navigation.

In order to select values by comparing more than one instance of an entity abstract schema type, more
than one identification variable ranging over the abstract schema type is needed in the FROM clause.

The following query returns orders whose quantity is greater than the order quantity for John Smith.
This example illustrates the use of two different identification variables in the FROM clause, both of the
abstract schema type Order. The SELECT clause of this query determines that it is the orders with
quantities larger than John Smith’s that are returned.

SELECT DISTINCT ol

FROM Order ol, Order o2

WHERE ol.quantity > o2.quantity AND
o2.customer.lastname = ‘Smith’ AND
o2.customer.firstname= ‘John’

[60] A range variable must not designate an embeddable class abstract schema type.

7/17/17

174 JSR-338 Maintenance Release

Oracle

The FROM Clause and Navigational DeclarationsJava Persistence 2.2, Maintenance Release Query Language

4.4.4

Path Expressions

An identification variable followed by the navigation operator (.) and a state field or association field is
a path expression. The type of the path expression is the type computed as the result of navigation; that
is, the type of the state field or association field to which the expression navigates. The type of a path
expression that navigates to an association field may be specified as a subtype of the declared type of
the association field by means of the TREAT operator. See section 4.4.9.

An identification variable qualified by the KEY, VALUE, or ENTRY operator is a path expression. The
KEY, VALUE, and ENTRY operators may only be applied to identification variables that correspond to
map-valued associations or map-valued element collections. The type of the path expression is the type
computed as the result of the operation; that is, the abstract schema type of the field that is the value of
the KEY, VALUE, or ENTRY operator (the map key, map value, or map entry respectively).[6l]

In the following query, photos is a map from photo label to filename.

SELECT i.name, VALUE (p)
FROM Item i JOIN i.photos p
WHERE KEY (p) LIKE ‘$egret’

In the above query the identification variable p designates an abstract schema type corresponding to the
map value. The results of VALUE (p) and KEY (p) are the map value and the map key associated with
p, respectively. The following query is equivalent:

SELECT i.name, p
FROM Item i JOIN i.photos p
WHERE KEY (p) LIKE ‘$egret’

A path expression using the KEY or VALUE operator can be further composed. A path expression
using the ENTRY operator is terminal. It cannot be further composed and can only appear in the
SELECT list of a query.

The syntax for qualified identification variables is as follows.

qualified_identification_variable :: =
map_field_identification_variable |
ENTRY (identification_variable)

map_field_identification_variable :: =
KEY((identification_variable) |
VALUE((identification_variable)

Depending on navigability, a path expression that leads to an association field or to a field whose type is
an embeddable class may be further composed. Path expressions can be composed from other path
expressions if the original path expression evaluates to a single-valued type (not a collection).

[61]

Note that use of VALUE is optional, as an identification variable referring to an association of type java.util.Map is of the
abstract schema type of the map value. (See section 4.4.2.)

JSR-338 Maintenance Release 175 7/17/17

Oracle

Query Language

4.4.4.1

Java Persistence 2.2, Maintenance Release The FROM Clause and Navigational Declara-

In the following example, contactInfo denotes an embeddable class consisting of an address and
set of phones. Phone is an entity.

SELECT p.vendor
FROM Employee e JOIN e.contactInfo.phones p
WHERE e.contactInfo.address.zipcode = '95054"'

Path expression navigability is composed using “inner join” semantics. That is, if the value of a non-ter-
minal field in the path expression is null, the path is considered to have no value, and does not partici-
pate in the determination of the result.

The following query is equivalent to the query above:

SELECT p.vendor
FROM Employee e JOIN e.contactInfo ¢ JOIN c.phones p
WHERE e.contactInfo.address.zipcode = '95054"'

Path Expression Syntax
The syntax for single-valued path expressions and collection-valued path expressions is as follows.

An identification variable used in a single_ valued object path _expression or in a
collection_valued_path_expression may be an unqualified identification variable or an identifica-
tion variable to which the KEY or VALUE function has been applied.

general_identification_variable ::=
identification_variable |
map_field_identification_variable

The type of an entity-valued path expression or an entity-valued subpath of a path expression used in a
WHERE clause may be specified as a subtype of the corresponding declared type by means of the
TREAT operator. See section 4.4.9.

general_subpath ::= simple_subpath | treated_subpath{.single_valued_object field}*

simple_subpath ::=
general_identification_variable |
general_identification_variable{.single_valued_object_field}*

treated_subpath ::= TREAT(general_subpath AS subtype)

single_valued_path_expression ::=
qualified_identification_variable |
TREAT(qualified_identification_variable AS subtype) |
state_field_path_expression |
single_valued_object_path _expression

state_field_path_expression ::= general_subpath.state_field

7/17/17

176 JSR-338 Maintenance Release

Oracle

The FROM Clause and Navigational DeclarationsJava Persistence 2.2, Maintenance Release Query Language

E°N

9]

state_valued_path_expression ::=
state_field_path _expression | general_identification_variable

single_valued_object_path expression ::= general_subpath.single valued_object field
collection_valued_path_expression ::= general_subpath.collection_valued_field

A single_valued _object field is designated by the name of an association field in a one-to-one or
many-to-one relationship or a field of embeddable class type. The type of a
single_valued_object _field is the abstract schema type of the related entity or embeddable class.

A state _field is designated by the name of an entity or embeddable class state field that corresponds to
a basic type.

A collection_valued_field is designated by the name of an association field in a one-to-many or a
many-to-many relationship or by the name of an element collection field. The type of a
collection_valued_field is a collection of values of the abstract schema type of the related entity or ele-
ment type.

It is syntactically illegal to compose a path expression from a path expression that evaluates to a collec-
tion. For example, if o designates Order, the path expression o.lineItems.product is illegal
since navigation to 1ineItems results in a collection. This case should produce an error when the
query string is verified. To handle such a navigation, an identification variable must be declared in the
FROM clause to range over the elements of the 1 ineItems collection. Another path expression must
be used to navigate over each such element in the WHERE clause of the query, as in the following:

SELECT DISTINCT 1.product
FROM Order AS o JOIN o.lineltems 1

It is illegal to use a collection_valued_path_expression other than in the FROM clause of a query
except in an empty_collection_comparison_expression, in a collection_member_expression, or
as an argument to the SIZE operator. See Sections 4.6.12, 4.6.13, and 4.6.17.2.2.

Joins

An inner join may be implicitly specified by the use of a cartesian product in the FROM clause and a
join condition in the WHERE clause. In the absence of a join condition, this reduces to the cartesian
product.

The main use case for this generalized style of join is when a join condition does not involve a foreign
key relationship that is mapped to an entity relationship.

Example:

SELECT c FROM Customer c, Employee e WHERE c.hatsize = e.shoesize

In general, use of this style of inner join (also referred to as theta-join) is less typical than explicitly
defined joins over relationships.

JSR-338 Maintenance Release 177 7/17/17

Oracle

Query Language Java Persistence 2.2, Maintenance Release The FROM Clause and Navigational Declara-
The syntax for explicit join operations is as follows:
join::= join_spec join_association_path_expression [AS] identification_variable [join _condition]
fetch_join ::= join_spec FETCH join_association_path_expression
Join_association_path_expression ::=
join_collection_valued _path_expression |
join_single _valued_path _expression |
TREAT(join_collection_valued path_expression AS subtype) |
TREAT(join_single _valued_path_expression AS subtype)
Join_collection_valued_path_expression::=
identification_variable.{single_valued_embeddable object field.}*collection_valued_field
Join_single_valued_path_expression::=
identification_variable.{single_valued_embeddable object field.}*single valued object field
join_spec::= [LEFT [OUTER] | INNER] JOIN
Join_condition ::= ON conditional_expression
The inner and outer join operation types described in sections 4.4.5.1, 4.4.5.2, and 4.4.5.3 are supported.
4.4.5.1 Inner Joins (Relationship Joins)
The syntax for the inner join operation is
[INNER] JOIN join_association_path_expression [AS] identification variable [join_condition]
For example, the query below joins over the relationship between customers and orders. This type of
join typically equates to a join over a foreign key relationship in the database.
SELECT c FROM Customer ¢ JOIN c.orders o WHERE c.status = 1
The keyword INNER may optionally be used:
SELECT ¢ FROM Customer c¢ INNER JOIN c.orders o WHERE c.status =1
This is equivalent to the following query using the earlier IN construct, defined in [4]. It selects those
customers of status 1 for which at least one order exists:
SELECT OBJECT (c) FROM Customer c, IN(c.orders) o WHERE c.status = 1
The query below joins over Employee, ContactInfo and Phone. ContactInfo is an
embeddable class that consists of an address and set of phones. Phone is an entity.
SELECT p.vendor
FROM Employee e JOIN e.contactInfo c¢ JOIN c.phones p
WHERE c.address.zipcode = '95054"
A join condition may be specified for an inner join. This is equivalent to specification of the same con-
dition in the WHERE clause.
71717 178 JSR-338 Maintenance Release

Oracle

The FROM Clause and Navigational DeclarationsJava Persistence 2.2, Maintenance Release Query Language

4.4.5.2 Left Outer Joins
LEFT JOIN and LEFT OUTER JOIN are synonymous. They enable the retrieval of a set of entities
where matching values in the join condition may be absent.

The syntax for a left outer join is

LEFT [OUTER] JOIN join_association_path _expression [AS] identification variable
[join_condition]

An outer join without a specified join condition has an implicit join condition over the foreign key rela-
tionship corresponding to the join_association_path_expression. It would typically be mapped to a
SQL outer join with an ON condition on the foreign key relationship as in the queries below:

Java Persistence query language:

SELECT s.name, COUNT (p)
FROM Suppliers s LEFT JOIN s.products p
GROUP BY s.name

SQL:

SELECT s.name, COUNT (p.id)

FROM Suppliers s LEFT JOIN Products p
ON s.id = p.supplierId

GROUP By s.name

An outer join with an explicit ON condition would cause an additional specified join condition to be
added to the generated SQL:

Java Persistence query language:

SELECT s.name, COUNT (p)

FROM Suppliers s LEFT JOIN s.products p
ON p.status = 'inStock'

GROUP BY s.name

SQL:

SELECT s.name, COUNT (p.id)
FROM Suppliers s LEFT JOIN Products p

ON s.id = p.supplierId AND p.status = 'inStock'
GROUP BY s.name

Note that the result of this query will be different from that of the following query:

SELECT s.name, COUNT (p)

FROM Suppliers s LEFT JOIN s.products p
WHERE p.status = 'inStock'

GROUP BY s.name

The result of the latter query will exclude suppliers who have no products in stock whereas the former
query will include them.

JSR-338 Maintenance Release 179 7/17/17

Oracle

Query L

anguage

4.4.5.3

4.4.6

Java Persistence 2.2, Maintenance Release The FROM Clause and Navigational Declara-

An important use case for LEFT JOIN is in enabling the prefetching of related data items as a side effect
of a query. This is accomplished by specifying the LEFT JOIN as a FETCH JOIN as described below.

Fetch Joins
A FETCH JOIN enables the fetching of an association or element collection as a side effect of the exe-
cution of a query.

The syntax for a fetch join is
fetch_join ::= [LEFT [OUTER] | INNER] JOIN FETCH join_association_path_expression

The association referenced by the right side of the FETCH JOIN clause must be an association or ele-
ment collection that is referenced from an entity or embeddable that is returned as a result of the query.
It is not permitted to specify an identification variable for the objects referenced by the right side of the
FETCH JOIN clause, and hence references to the implicitly fetched entities or elements cannot appear
elsewhere in the query.

The following query returns a set of departments. As a side effect, the associated employees for those
departments are also retrieved, even though they are not part of the explicit query result. The initializa-
tion of the persistent state or relationship fields or properties of the objects that are retrieved as a result
of a fetch join is determined by the metadata for that class—in this example, the Employee entity
class.

SELECT d
FROM Department d LEFT JOIN FETCH d.employees
WHERE d.deptno = 1

A fetch join has the same join semantics as the corresponding inner or outer join, except that the related
objects specified on the right-hand side of the join operation are not returned in the query result or oth-
erwise referenced in the query. Hence, for example, if department 1 has five employees, the above query
returns five references to the department 1 entity.

The FETCH JOIN construct must not be used in the FROM clause of a subquery.

Collection Member Declarations

An identification variable declared by a collection_member_declaration ranges over values of a col-
lection obtained by navigation using a path expression.

An identification variable of a collection member declaration is declared using a special operator, the
reserved identifier IN. The argument to the IN operator is a collection-valued path expression. The path
expression evaluates to a collection type specified as a result of navigation to a collection-valued associ-
ation field of an entity or embeddable class abstract schema type.

The syntax for declaring a collection member identification variable is as follows:

collection_member_declaration ::=
IN (collection_valued_path_expression) [AS] identification_variable

7/17/17

180 JSR-338 Maintenance Release

Oracle

The FROM Clause and Navigational DeclarationsJava Persistence 2.2, Maintenance Release Query Language

4.4.7

For example, the query

SELECT DISTINCT o
FROM Order o JOIN o.lineltems 1
WHERE 1l.product.productType = ‘office supplies’

can equivalently be expressed as follows, using the IN operator:

SELECT DISTINCT o
FROM Order o, IN(o.linelItems) 1
WHERE 1l.product.productType = ‘office supplies’

In this example, 1ineItems is the name of an association field whose value is a collection of
instances of the abstract schema type LineItem. The identification variable 1 designates a member of
this collection, a single LineItem abstract schema type instance. In this example, o is an identifica-
tion variable of the abstract schema type Order.

FROM Clause and SQL

4.4.8

The Java Persistence query language treats the FROM clause similarly to SQL in that the declared iden-
tification variables affect the results of the query even if they are not used in the WHERE clause. Appli-
cation developers should use caution in defining identification variables because the domain of the
query can depend on whether there are any values of the declared type.

For example, the FROM clause below defines a query over all orders that have line items and existing
products. If there are no Product instances in the database, the domain of the query is empty and no

order is selected.

SELECT o
FROM Order AS o JOIN o.lineltems 1 JOIN l.product p

Polymorphism

4.4.9

Java Persistence queries are automatically polymorphic. The FROM clause of a query designates not
only instances of the specific entity class(es) to which it explicitly refers but instances of subclasses of
those classes as well. The instances returned by a query thus include instances of the subclasses that sat-
isfy the query criteria.

Non-polymorphic queries or queries whose polymorphism is restricted can be specified using entity
type expressions in the WHERE clause to restrict the domain of the query. See section 4.6.17.5.

Downcasting

The use of the TREAT operator is supported for downcasting within path expressions in the FROM and
WHERE clauses. Use of the TREAT operator allows access to subclass-specific state.

JSR-338 Maintenance Release 181 7/17/17

Oracle

Query Language Java Persistence 2.2, Maintenance Release WHERE Clause
If during query execution the first argument to the TREAT operator is not a subtype (proper or
improper) of the target type, the path is considered to have no value, and does not participate in the
determination of the result. That is, in the case of a join, the referenced object does not participate in the
result, and in the case of a restriction, the associated predicate is false. Use of the TREAT operator
therefore also has the effect of filtering on the specified type (and its subtypes) as well as performing the
downcast. If the target type is not a subtype (proper or improper) of the static type of the first argument,
the query is invalid.

Examples:
SELECT b.name, b.ISBN
FROM Order o JOIN TREAT (o.product AS Book) b
SELECT e FROM Employee e JOIN TREAT (e.projects AS LargeProject) l1lp
WHERE lp.budget > 1000
SELECT e FROM Employee e JOIN e.projects p
WHERE TREAT (p AS LargeProject) .budget > 1000
OR
TREAT (p AS SmallProject) .name LIKE 'Persist%'
OR

p.description LIKE "cost overrun"
SELECT e FROM Employee e
WHERE TREAT (e AS Exempt) .vacationDays > 10

OR TREAT (e AS Contractor) .hours > 100

4.5 WHERE Clause
The WHERE clause of a query consists of a conditional expression used to select objects or values that
satisfy the expression. The WHERE clause restricts the result of a select statement or the scope of an
update or delete operation.
A WHERE clause is defined as follows:
where_clause ::= WHERE conditional _expression
The GROUP BY construct enables the aggregation of values according to the properties of an entity
class. The HAVING construct enables conditions to be specified that further restrict the query result as
restrictions upon the groups.
The syntax of the HAVING clause is as follows:
having_clause ::= HAVING conditional_expression
The GROUP BY and HAVING constructs are further discussed in Section 4.7.
71717 182 JSR-338 Maintenance Release

Oracle

Conditional Expressions Java Persistence 2.2, Maintenance Release Query Language

4.6

Conditional Expressions

4.6.1

The following sections describe language constructs that can be used in a conditional expression of the
WHERE clause, the HAVING clause, or in an ON condition.

State fields that are mapped in serialized form or as lobs cannot be portably used in conditional expres-
ions[62]
sionst™4.

Literals

A string literal is enclosed in single quotes—for example: ‘literal’. A string literal that includes a single
quote is represented by two single quotes—for example: ‘literal”’s’. String literals in queries, like Java
String literals, use unicode character encoding. The use of Java escape notation is not supported in
query string literals.

Exact numeric literals support the use of Java integer literal syntax as well as SQL exact numeric literal
syntax.

Approximate literals support the use Java floating point literal syntax as well as SQL approximate
numeric literal syntax.

Appropriate suffixes can be used to indicate the specific type of a numeric literal in accordance with the
Java Language Specification. Support for the use of hexadecimal and octal numeric literals is not
required by this specification.

Enum literals support the use of Java enum literal syntax. The fully qualified enum class name must be
specified.

The JDBC escape syntax may be used for the specification of date, time, and timestamp literals. For
example:

SELECT o
FROM Customer c JOIN c.orders o
WHERE c.name = 'Smith'

AND o.submissionDate < {d '2008-12-31"'}

The portability of this syntax for date, time, and timestamp literals is dependent upon the JDBC driver
in use. Persistence providers are not required to translate from this syntax into the native syntax of the
database or driver.

The boolean literals are TRUE and FALSE.

Entity type literals are specified by entity names—for example: Customer.

Although reserved literals appear in upper case, they are case insensitive.

[62] The implementation is not expected to perform such query operations involving such fields in memory rather than in the database.

JSR-338 Maintenance Release 183 7/17/17

Oracle

Query Language Java Persistence 2.2, Maintenance Release Conditional Expressions
4.6.2 Identification Variables
All identification variables used in the WHERE or HAVING clause of a SELECT or DELETE state-
ment must be declared in the FROM clause, as described in Section 4.4.2. The identification variables
used in the WHERE clause of an UPDATE statement must be declared in the UPDATE clause.
Identification variables are existentially quantified in the WHERE and HAVING clause. This means
that an identification variable represents a member of a collection or an instance of an entity’s abstract
schema type. An identification variable never designates a collection in its entirety.
4.6.3 Path Expressions
It is illegal to use a collection_valued_path_expression within a WHERE or HAVING clause as part
of a conditional expression except in an empty_collection_comparison_expression, in a
collection_member_expression, or as an argument to the SIZE operator.
4.6.4 Input Parameters
Either positional or named parameters may be used. Positional and named parameters must not be
mixed in a single query.
Input parameters can only be used in the WHERE clause or HAVING clause of a query or as the new
value for an update item in the SET clause of an update statement.
Note that if an input parameter value is null, comparison operations or arithmetic operations
involving the input parameter will return an unknown value. See Section 4.11.
All input parameters must be single-valued, except in IN expressions (see section 4.6.9), which support
the use of collection-valued input parameters.
The API for the binding of query parameters is described in Chapter 3.
4.6.4.1 Positional Parameters
The following rules apply to positional parameters.
¢ Input parameters are designated by the question mark (?) prefix followed by an integer. For
example: ?1.
¢ Input parameters are numbered starting from 1.
e The same parameter can be used more than once in the query string.
¢ The ordering of the use of parameters within the query string need not conform to the order of
the positional parameters.
71717 184 JSR-338 Maintenance Release

Oracle

Conditional Expressions Java Persistence 2.2, Maintenance Release Query Language

4.6.4.2 Named Parameters
A named parameter is denoted by an identifier that is prefixed by the ":" symbol. It follows the rules for
identifiers defined in Section 4.4.1. Named parameters are case sensitive.

Example:

SELECT c
FROM Customer c
WHERE c.status = :stat

The same named parameter can be used more than once in the query string.

4.6.5 Conditional Expression Composition

Conditional expressions are composed of other conditional expressions, comparison operations, logical
operations, path expressions that evaluate to boolean values, boolean literals, and boolean input param-
eters.

The scalar expressions described in section 4.6.17 can be used in conditional expressions.

Aggregate functions can only be used in conditional expressions in a HAVING clause. See section 4.7.
Standard bracketing () for ordering expression evaluation is supported.

Conditional expressions are defined as follows:

conditional_expression ::= conditional _term | conditional_expression OR conditional_term
conditional_term ::= conditional_factor | conditional _term AND conditional_factor
conditional_factor ::= [NOT] conditional _primary
conditional_primary ::= simple_cond_expression | (conditional_expression)
simple_cond_expression ::=

comparison_expression |

between_expression |

in_expression |

like_expression |

null_comparison_expression |

empty_collection_comparison_expression |

collection_member_expression |

exists_expression

4.6.6 Operators and Operator Precedence

The operators are listed below in order of decreasing precedence.
¢ Navigation operator (.)

e Arithmetic operators:

+, - unary

JSR-338 Maintenance Release 185 7/17/17

Oracle

Query Language

4.6.7

Java Persistence 2.2, Maintenance Release Conditional Expressions

* / multiplication and division

+, - addition and subtraction

e Comparison operators : =, >, >=, <, <=, <> (not equal), [NOT] BETWEEN, [NOT] LIKE,
[NOT] IN, IS [NOT] NULL, IS [NOT] EMPTY, [NOT] MEMBER [OF], [NOT] EXISTS

¢ Logical operators:
NOT
AND
OR

The following sections describe operators used in specific expressions.

Comparison Expressions

4.6.8

The syntax for the use of comparison expressions in a conditional expression is as followsl63):

comparison_expression ::=

string_expression comparison_operator {string_expression | all_or_any _expression} |
boolean_expression { =|<> } {boolean_expression | all_or_any expression} |
enum_expression { =|<>} {enum_expression | all_or_any expression} |
datetime_expression comparison_operator

{datetime_expression | all_or_any_expression} |
entity_expression { = | <>} {entity_expression | all_or_any expression} |
arithmetic_expression comparison_operator

{arithmetic_expression | all_or_any expression} |
entity_type_expression { = | <>} entity_type_expression}

comparison_operator :==|>|>=|<|<=| <>
Examples:

item.cost * 1.08 <= 100.00
CONCAT (person.lastName, ‘', ', person.firstName)) = ‘Jones, Sam’

TYPE (e) = ExemptEmployee

Between Expressions

The syntax for the use of the comparison operator [NOT] BETWEEN in a conditional expression is as
follows:

[63] Note that queries that contain subqueries on both sides of a comparison operation will not be portable across all databases.

7/17/17

186 JSR-338 Maintenance Release

Oracle

Conditional Expressions Java Persistence 2.2, Maintenance Release Query Language

4.6.9

between_expression ::=
arithmetic_expression [NOT] BETWEEN arithmetic_expression AND arithmetic_expression |
string_expression [NOT] BETWEEN string_expression AND string_expression |
datetime_expression [NOT] BETWEEN datetime_expression AND datetime_expression

The BETWEEN expression

x BETWEEN y AND z

is semantically equivalent to:

y <= x AND x <= z

The rules for unknown and NULL values in comparison operations apply. See Section 4.11.

Examples:

p.age BETWEEN 15 and 19isequivalenttop.age >= 15 AND p.age <= 19

p.age NOT BETWEEN 15 and 19isequivalenttop.age < 15 OR p.age > 19

In the following example, transactionHistory is a list of credit card transactions defined using
an order column.

SELECT t
FROM CreditCard c¢ JOIN c.transactionHistory t
WHERE c.holder.name = ‘John Doe’ AND INDEX (t) BETWEEN O AND 9

In Expressions

The syntax for the use of the comparison operator [NOT] IN in a conditional expression is as follows:

in_expression ::=
{state_valued _path_expression | type_discriminator} [NOT] IN
{ (in_item {, in_item}*) | (subquery) | collection_valued_input_parameter }
in_item ::= literal | single_valued_input_parameter

The state_valued_path_expression must have a string, numeric, date, time, timestamp, or enum
value.

The literal and/or input parameter values must be [like the same abstract schema type of the
state_valued_path_expression in type. (See Section 4.12).

The results of the subquery must be [like the same abstract schema type of the
state_valued_path_expression in type. Subqueries are discussed in Section 4.6.16.

JSR-338 Maintenance Release 187 7/17/17

Oracle

Query Language

4.6.10

Java Persistence 2.2, Maintenance Release Conditional Expressions

Examples:

o.country IN ('UK’, ’'US’, ’France’) istrue for UK and false for Peru, and is equivalent
to the expression (o.country = 'UK’) OR (o.country = 'US’) OR (o.country = '
France’).

o.country NOT IN ('UK’, 'US’, ’'France’) is false for UK and true for Peru, and is
equivalent to the expression NOT ((o.country = 'UK’) OR (o.country = ’US’) OR

(o.country = ’'France’)).

There must be at least one element in the comma separated list that defines the set of values for the IN
expression.

If the value of a state_valued_path_expression or in_item in an IN or NOT IN expression is NULL
or unknown, the value of the expression is unknown.

Note that use of a collection-valued input parameter will mean that a static query cannot be precom-
piled.

Like Expressions

The syntax for the use of the comparison operator [NOT] LIKE in a conditional expression is as fol-
lows:

like_expression ::=
string_expression [NOT] LIKE pattern_value [ESCAPE escape_character]

The string_expression must have a string value. The pattern_value is a string literal or a string-val-
ued input parameter in which an underscore (_) stands for any single character, a percent (%) character
stands for any sequence of characters (including the empty sequence), and all other characters stand for
themselves. The optional escape_character is a single-character string literal or a character-valued
input parameter (i.e., char or Character) and is used to escape the special meaning of the under-
score and percent characters in pattern_value. [64]
Examples:

® address.phone LIKE ‘12%3’ is true for ‘123° ‘12993’ and false for ‘1234’

e asentence.word LIKE ‘I _se’ is true for ‘lose’ and false for ‘loose’

* aword.underscored LIKE *\ %’ ESCAPE ‘\"is true for * foo’ and false for ‘bar’

* address.phone NOT LIKE ‘12%3’ is false for ‘123’ and ‘12993’ and true for 1234’

[64] Refer to [2] for a more precise characterization of these rules.

7/17/17

188 JSR-338 Maintenance Release

Oracle

Conditional Expressions Java Persistence 2.2, Maintenance Release Query Language

4.6.11

If the value of the string_expression or pattern_value is NULL or unknown, the value of the LIKE
expression is unknown. If the escape_character is specified and is NULL, the value of the LIKE
expression is unknown.

Null Comparison Expressions

4.6.12

The syntax for the use of the comparison operator IS NULL in a conditional expression is as follows:

null_comparison_expression ::=
{single_valued_path _expression | input_parameter } IS [NOT] NULL

A null comparison expression tests whether or not the single-valued path expression or input parameter
is a NULL value.

Null comparisons over instances of embeddable class types are not supported. Support for comparisons
over embeddables may be added in a future release of this specification.

Empty Collection Comparison Expressions

The syntax for the use of the comparison operator IS EMPTY in an
empty_collection_comparison_expression is as follows:

empty_collection_comparison_expression ::=
collection_valued_path_expression IS [NOT] EMPTY

This expression tests whether or not the collection designated by the collection-valued path expression
is empty (i.e, has no elements).

Example:

SELECT o
FROM Order o
WHERE o.linelItems IS EMPTY

If the value of the collection-valued path expression in an empty collection comparison expression is
unknown, the value of the empty comparison expression is unknown.

JSR-338 Maintenance Release 189 7/17/17

Oracle

Query Language

4.6.13

Java Persistence 2.2, Maintenance Release Conditional Expressions

Collection Member Expressions

4.6.14

The syntax for the wuse of the comparison operator MEMBER OF%) in an
collection_member_expression is as follows:

collection_member_expression ::=

entity_or_value_expression [NOT] MEMBER [OF] collection_valued_path_expression
entity_or_value_expression ::=

single_valued_object_path expression |

state_valued_path_expression |

simple_entity _or_value_expression
simple_entity_or_value_expression ::=

identification_variable |

input_parameter |

literal

This expression tests whether the designated value is a member of the collection specified by the collec-
tion-valued path expression.

Expressions that evaluate to embeddable types are not supported in collection member expressions.
Support for use of embeddables in collection member expressions may be added in a future release of
this specification.

If the collection valued path expression designates an empty collection, the value of the MEMBER OF
expression is FALSE and the value of the NOT MEMBER OF expression is TRUE. Otherwise, if the
value of the collection_valued_path_expression or entity_or_value_expression in the collection
member expression is NULL or unknown, the value of the collection member expression is unknown.

Example:

SELECT p
FROM Person p
WHERE 'Joe' MEMBER OF p.nicknames

Exists Expressions

An EXISTS expression is a predicate that is true only if the result of the subquery consists of one or
more values and that is false otherwise.

The syntax of an exists expression is

exists_expression::= [NOT] EXISTS (subquery)

[65] The use of the reserved word OF is optional in this expression.

7/17/17

190 JSR-338 Maintenance Release

Oracle

Conditional Expressions Java Persistence 2.2, Maintenance Release Query Language

4.6.15

Example:

SELECT DISTINCT emp

FROM Employee emp

WHERE EXISTS (
SELECT spouseEmp
FROM Employee spouseEmp
WHERE spouseEmp = emp.spouse)

The result of this query consists of all employees whose spouses are also employees.

All or Any Expressions

4.6.16

An ALL conditional expression is a predicate over a subquery that is true if the comparison operation is
true for all values in the result of the subquery or the result of the subquery is empty. An ALL condi-
tional expression is false if the result of the comparison is false for at least one value of the result of the
subquery, and is unknown if neither true nor false.

An ANY conditional expression is a predicate over a subquery that is true if the comparison operation is
true for some value in the result of the subquery. An ANY conditional expression is false if the result of
the subquery is empty or if the comparison operation is false for every value in the result of the sub-
query, and is unknown if neither true nor false. The keyword SOME is synonymous with ANY.

The comparison operators used with ALL or ANY conditional expressions are =, <, <=, >, >= <>, The
result of the subquery must be like that of the other argument to the comparison operator in type. See
Section 4.12.

The syntax of an ALL or ANY expression is specified as follows:
all_or_any expression ::= { ALL | ANY | SOME} (subquery)
Example:

SELECT emp
FROM Employee emp
WHERE emp.salary > ALL (
SELECT m.salary
FROM Manager m
WHERE m.department = emp.department)

The result of this query consists of all employees whose salaries exceed the salaries of all managers in
their department.

Subqueries

Subqueries may be used in the WHERE or HAVING clause.[%0]

The syntax for subqueries is as follows:

[66]

Subqueries are restricted to the WHERE and HAVING clauses in this release. Support for subqueries in the FROM clause will be
considered in a later release of this specification.

JSR-338 Maintenance Release 191 7/17/17

Oracle

Query Language

Java Persistence 2.2, Maintenance Release Conditional Expressions

subquery ::= simple_select_clause subquery from_clause [where_clause]
[groupby clause] [having _clause]

simple_select_clause ::= SELECT [DISTINCT] simple_select_expression
subquery from_clause ::=

FROM subselect_identification_variable declaration

{, subselect_identification_variable _declaration |
collection_member_declaration }*

subselect _identification_variable_declaration ::=

identification_variable declaration |

derived_path_expression [AS] identification _variable {join}* |

derived_collection_member_declaration
simple_select_expression::=

single _valued_path_expression |

scalar_expression |

aggregate_expression |

identification_variable
derived_path_expression ::=

general_derived_path.single valued_object field |

general_derived_path.collection _valued_field
general_derived_path ::=

simple_derived_path |

treated_derived_path{.single_valued_object field}*
simple_derived_path ::= superquery_identification_variable{.single _valued object field}*
treated_derived_path ::= TREAT(general_derived_path AS subtype)
derived_collection_member_declaration ::=

IN superquery_identification_variable.{single valued_object field.}*collection _valued_field

Examples:

SELECT DISTINCT emp

FROM Employee emp

WHERE EXISTS (
SELECT spouseEmp
FROM Employee spouseEmp
WHERE spouseEmp = emp.spouse)

Note that some contexts in which a subquery can be used require that the subquery be a scalar subquery
(i.e., produce a single result). This is illustrated in the following examples using numeric comparisons.

SELECT c
FROM Customer c
WHERE (SELECT AVG(o.price) FROM c.orders o) > 100

SELECT goodCustomer
FROM Customer goodCustomer
WHERE goodCustomer.balanceOwed < (
SELECT AVG(c.balanceOwed) /2.0 FROM Customer c)

7/17/17

192 JSR-338 Maintenance Release

Oracle

Conditional Expressions Java Persistence 2.2, Maintenance Release Query Language

4.6.17 Scalar Expressions

Numeric, string, datetime, case, and entity type expressions result in scalar values.

Scalar expressions may be used in the SELECT clause of a query as well as in the WHERE!®"! and
HAVING clauses.

scalar_expression::=

arithmetic_expression |
string_expression |
enum_expression |
datetime_expression |
boolean_expression |
case_expression |
entity_type_expression

4.6.17.1 Arithmetic Expressions

The arithmetic operators are:

+, - unary
* / multiplication and division

+, - addition and subtraction
Arithmetic operations use numeric promotion.

Arithmetic functions are described in section 4.6.17.2.2.

4.6.17.2 Built-in String, Arithmetic, and Datetime Functional Expressions

The Java Persistence query language includes the built-in functions described in subsections 4.6.17.2.1,
4.6.17.2.2,4.6.17.2.3, which may be used in the SELECT, WHERE or HAVING clause of a query. The
invocation of predefined database functions and user-defined database functions is described in section
4.6.17.3.

If the value of any argument to a functional expression is null or unknown, the value of the functional
expression is unknown.

4.6.17.2.1 String Functions

functions_returning_strings ::=
CONCAT(string_expression, string_expression {, string_expression}*) |
SUBSTRING(string_expression,
arithmetic_expression [, arithmetic_expression]) |
TRIM([[trim_specification] [trim_character] FROM] string_expression) |
LOWER(string_expression) |

[67] Note that expressions involving aggregate operators must not be used in the WHERE clause.

JSR-338 Maintenance Release 193 7/17/17

Oracle

Query Language

4.6.17.2.2

Java Persistence 2.2, Maintenance Release Conditional Expressions

UPPER(string_expression)
trim_specification ::= LEADING | TRAILING | BOTH

functions_returning_numerics::=
LENGTH(string_expression) |
LOCATE(string_expression, string_expression[, arithmetic_expression])

The CONCAT function returns a string that is a concatenation of its arguments.

The second and third arguments of the SUBSTRING function denote the starting position and length of
the substring to be returned. These arguments are integers. The third argument is optional. If it is not
specified, the substring from the start position to the end of the string is returned. The first position of a
string is denoted by 1. The SUBSTRING function returns a string.

The TRIM function trims the specified character from a string. If the character to be trimmed is not
specified, it will be assumed to be space (or blank). The optional frim_character is a single-character
string literal or a character-valued input parameter (i.e., char or Character)[Gg]. If a trim specifica-
tion is not provided, it defaults to BOTH. The TRIM function returns the trimmed string.

The LOWER and UPPER functions convert a string to lower and upper case, respectively, with regard
to the locale of the database. They return a string.

The LOCATE function returns the position of a given string within a string, starting the search at a spec-
ified position. It returns the first position at which the string was found as an integer. The first argument
is the string to be located; the second argument is the string to be searched; the optional third argument
is an integer that represents the string position at which the search is started (by default, the beginning of
the string to be searched). The first position in a string is denoted by 1. If the string is not found, 0 is
returned.[6%]

The LENGTH function returns the length of the string in characters as an integer.

Arithmetic Functions

functions_returning_numerics::=
ABS(arithmetic_expression) |
SQRT(arithmetic_expression) |
MOD(arithmetic_expression, arithmetic_expression) |
SIZE(collection_valued_path_expression) |
INDEX(identification_variable)

The ABS function takes a numeric argument and returns a number (integer, float, or double) of the same
type as the argument to the function.

The SQRT function takes a numeric argument and returns a double.

[68]

[69]

Note that not all databases support the use of a trim character other than the space character; use of this argument may result in
queries that are not portable.

Note that not all databases support the use of the third argument to LOCATE; use of this argument may result in queries that are
not portable.

7/17/17

194 JSR-338 Maintenance Release

Oracle

Conditional Expressions Java Persistence 2.2, Maintenance Release Query Language

The MOD function takes two integer arguments and returns an integer.

Numeric arguments to these functions may correspond to the numeric Java object types as well as the
primitive numeric types.

The SIZE function returns an integer value, the number of elements of the collection. If the collection is
empty, the SIZE function evaluates to zero.

The INDEX function returns an integer value corresponding to the position of its argument in an
ordered list. The INDEX function can only be applied to identification variables denoting types for
which an order column has been specified.

In the following example, studentWaitlist is a list of students for which an order column has
been specified:

SELECT w.name

FROM Course c¢ JOIN c.studentWaitlist w
WHERE c.name = ‘Calculus’

AND INDEX (w) = 0

4.6.17.2.3 Datetime Functions

functions_returning_datetime:=
CURRENT_DATE |
CURRENT_TIME |
CURRENT_TIMESTAMP

The datetime functions return the value of current date, time, and timestamp on the database server.

4.6.17.3 Invocation of Predefined and User-defined Database Functions
The invocation of functions other than the built-in functions of the Java Persistence query language is
supported by means of the function_invocation syntax. This includes the invocation of predefined data-
base functions and user-defined database functions.

function_invocation::= FUNCTION(function_name {, function_arg}*)

function_arg ::=
literal |
state_valued_path_expression |
input_parameter |
scalar_expression

The function_name argument is a string that denotes the database function that is to be invoked. The
arguments must be suitable for the database function that is to be invoked. The result of the function
must be suitable for the invocation context.

The function may be a database-defined function or a user-defined function. The function may be a sca-
lar function or an aggregate function.

JSR-338 Maintenance Release 195 7/17/17

Oracle

Query Language

4.6.17.4

Java Persistence 2.2, Maintenance Release Conditional Expressions

Applications that use the function_invocation syntax will not be portable across databases.
Example:

SELECT c
FROM Customer c
WHERE FUNCTION (‘hasGoodCredit’, c.balance, c.creditLimit)

Case Expressions
The following forms of case expressions are supported: general case expressions, simple case expres-
sions, coalesce expressions, and nullif expressions.[”°

case_expression::=
general_case_expression |
simple_case_expression |
coalesce_expression |
nullif_expression

general_case_expression::=
CASE when_clause {when_clause}* ELSE scalar_expression END
when_clause::= WHEN conditional_expression THEN scalar_expression

simple_case_expression::=
CASE case_operand simple_when_clause {simple_when_clause}*
ELSE scalar_expression
END
case_operand::= state_valued_path _expression | type_discriminator
simple_when_clause::= WHEN scalar_expression THEN scalar_expression

coalesce_expression::= COALESCE(scalar_expression {, scalar_expression}+)
nullif_expression::= NULLIF(scalar_expression, scalar_expression)
Examples:

UPDATE Employee e
SET e.salary =
CASE WHEN e.rating = 1 THEN e.salary * 1.1
WHEN e.rating = 2 THEN e.salary * 1.05
ELSE e.salary * 1.01
END

UPDATE Employee e
SET e.salary =
CASE e.rating WHEN 1 THEN e.salary * 1.1
WHEN 2 THEN e.salary * 1.05
ELSE e.salary * 1.01
END

[70]

Note that not all databases support the use of SQL case expressions. The use of case expressions may result in queries that are not
portable to such databases.

7/17/17

196 JSR-338 Maintenance Release

Oracle

Conditional Expressions Java Persistence 2.2, Maintenance Release Query Language

4.6.17.5

SELECT e.name,
CASE TYPE (e) WHEN Exempt THEN 'Exempt'
WHEN Contractor THEN 'Contractor'
WHEN Intern THEN 'Intern'
ELSE 'NonExempt'

END
FROM Employee e
WHERE e.dept.name = 'Engineering'

SELECT e.name,
f.name,
CONCAT (CASE WHEN f.annualMiles > 50000 THEN 'Platinum '
WHEN f.annualMiles > 25000 THEN 'Gold '
ELSE '!
END,
'Frequent Flyer')
FROM Employee e JOIN e.frequentFlierPlan f

Entity Type Expressions

An entity type expression can be used to restrict query polymorphism. The TYPE operator returns the
exact type of the argument.

The syntax of an entity type expression is as follows:

entity_type_expression ::=
type_discriminator |
entity _type_literal |
input_parameter
type_discriminator ::=
TYPE(general_identification variable |
single_valued_object path expression |
input_parameter)

An entity_type_literal is designated by the entity name.
The Java class of the entity is used as an input parameter to specify the entity type.
Examples:

SELECT e
FROM Employee e
WHERE TYPE (e) IN (Exempt, Contractor)

SELECT e
FROM Employee e
WHERE TYPE (e) IN (:empTypel, :empType?2)

SELECT e
FROM Employee e
WHERE TYPE (e) IN :empTypes

SELECT TYPE (e)
FROM Employee e
WHERE TYPE (e) <> Exempt

JSR-338 Maintenance Release 197 7/17/17

Oracle

Query Language

Java Persistence 2.2, Maintenance Release GROUP BY, HAVING

4.7 GROUP BY, HAVING

The GROUP BY construct enables the aggregation of result values according to a set of properties. The
HAVING construct enables conditions to be specified that further restrict the query result. Such condi-
tions are restrictions upon the groups.

The syntax of the GROUP BY and HAVING clauses is as follows:

groupby clause ::= GROUP BY groupby _item {, groupby _item}*
groupby item ::= single_valued _path_expression | identification_variable

having_clause ::= HAVING conditional_expression

If a query contains both a WHERE clause and a GROUP BY clause, the effect is that of first applying
the where clause, and then forming the groups and filtering them according to the HAVING clause. The
HAVING clause causes those groups to be retained that satisfy the condition of the HAVING clause.

The requirements for the SELECT clause when GROUP BY is used follow those of SQL: namely, any
item that appears in the SELECT clause (other than as an aggregate function or as an argument to an
aggregate function) must also appear in the GROUP BY clause. In forming the groups, null values are
treated as the same for grouping purposes.

Grouping by an entity is permitted. In this case, the entity must contain no serialized state fields or
lob-valued state fields that are eagerly fetched. Grouping by an entity that contains serialized state fields
or lob-valued state fields is not portable, since the implementation is permitted to eagerly fetch fields or
properties that have been specified as LAZY.

Grouping by embeddables is not supported.

The HAVING clause is used to filter over the groups, and can contain aggregate functions over
attributes included in the groups and/or functions or other query language operators over the attributes
that are used for grouping. It is not required that an aggregate function used in the HAVING clause also
be used in the SELECT clause.

If there is no GROUP BY clause and the HAVING clause is used, the result is treated as a single group,
and the select list can only consist of aggregate functions. The use of HAVING in the absence of
GROUP BY is not required to be supported by an implementation of this specification. Portable appli-
cations should not rely on HAVING without the use of GROUP BY.

7/17/17

198 JSR-338 Maintenance Release

Oracle

SELECT Clause Java Persistence 2.2, Maintenance Release Query Language

Examples:

SELECT c.status, AVG(c.filledOrderCount), COUNT (c)
FROM Customer c

GROUP BY c.status

HAVING c.status IN (1, 2)

SELECT c.country, COUNT (c)
FROM Customer c

GROUP BY c.country

HAVING COUNT (c) > 30

SELECT ¢, COUNT (o)

FROM Customer c¢ JOIN c.orders o
GROUP BY c

HAVING COUNT (o) >= 5

4.8 SELECT Clause

The SELECT clause denotes the query result. More than one value may be returned from the SELECT
clause of a query.

The SELECT clause can contain one or more of the following elements: an identification variable that
ranges over an abstract schema type, a single-valued path expression, a scalar expression, an aggregate
expression, a constructor expression.

The SELECT clause has the following syntax:

select_clause ::= SELECT [DISTINCT] select_item {, select_item}*
select_item ::= select_expression [[AS] result variable]
select_expression ::=

single_valued_path_expression |

scalar_expression |

aggregate_expression |

identification_variable |

OBJECT (identification _variable) |

constructor_expression
constructor_expression ::=

NEW constructor_name (constructor_item {, constructor_item}*)
constructor_item ::=

single_valued_path_expression |

scalar_expression |

aggregate_expression |

identification_variable
aggregate_expression ::=

{ AVG | MAX | MIN | SUM } (/DISTINCT] state_valued_path_expression) |

COUNT (/DISTINCT] identification_variable | state_valued _path_expression |

single_valued_object_path _expression) |
function_invocation

JSR-338 Maintenance Release 199 7/17/17

Oracle

Query Language

4.8.1

Java Persistence 2.2, Maintenance Release SELECT Clause

For example:

SELECT c.id, c.status
FROM Customer ¢ JOIN c.orders o
WHERE o.count > 100

In the following example, videoInventory is a Map from the entity Movie to the number of copies
in stock:

SELECT v.location.street, KEY (i) .title, VALUE (i)
FROM VideoStore v JOIN v.videoInventory i
WHERE v.location.zipcode = '94301' AND VALUE (i) > O

Note that the SELECT clause must be specified to return only single-valued expressions. The query
below is therefore not valid:

SELECT o.lineItems FROM Order AS o

The DISTINCT keyword is used to specify that duplicate values must be eliminated from the query
result.

If DISTINCT is not specified, duplicate values are not eliminated.
The result of DISTINCT over embeddable objects or map entry results is undefined.

Standalone identification variables in the SELECT clause may optionally be qualified by the OBJECT
operator. [71] The SELECT clause must not use the OBJECT operator to qualify path expressions.

A result_variable may be used to name a select_item in the query result.[’?]

For example,

SELECT ¢, COUNT (1) AS itemCount

FROM Customer c¢ JOIN c.Orders o JOIN o.linelItems 1
WHERE c.address.state = ‘CA'

GROUP BY c

ORDER BY itemCount

Result Type of the SELECT Clause

The type of the query result specified by the SELECT clause of a query is an entity abstract schema
type, a state field type, the result of a scalar expression, the result of an aggregate function, the result of
a construction operation, or some sequence of these.

[71] Note that the keyword OBJECT is not required. It is preferred that it be omitted for new queries.

[72] This can be used, for example, to refer to a select expression in the ORDER BY clause.

7/17/17

200 JSR-338 Maintenance Release

Oracle

SELECT Clause Java Persistence 2.2, Maintenance Release Query Language

The result type of the SELECT clause is defined by the the result types of the select expressions con-
tained in it. When multiple select expressions are used in the SELECT clause, the elements in this result
correspond in order to the order of their specification in the SELECT clause and in type to the result
types of each of the select expressions.

The type of the result of a select_expression is as follows:

e The result type of an identification variable is the type of the entity object or embeddable
object to which the identification variable corresponds. The type of an identification_variable
that refers to an entity abstract schema type is the type of the entity to which that identification
variable corresponds or a subtype as determined by the object/relational mapping.

e The result type of a single_valued_path_expression that is a
state_field_path_expression is the same type as the corresponding state field of the entity or
embeddable class. If the state field of the entity is a primitive type, the result type is the corre-
sponding object type.

e The result type of a single_valued_path_expression that is a
single_valued_object_path_expression is the type of the entity object or embeddable
object to which the path expression corresponds. A single_valued_object _path_expression
that results in an entity object will result in an entity of the type of the relationship field or the
subtype of the relationship field of the entity object as determined by the object/relational map-

ping.

e The result type of a single_valued_path_expression that is an identification_variable to
which the KEY or VALUE function has been applied is determined by the type of the map key
or value respectively, as defined by the above rules.

e The result type of a single_valued_path_expression that is an identification_variable to
which the ENTRY function has been applied is java.util.Map.Entry, where the key
and value types of the map entry are determined by the above rules as applied to the map key

and map value respectively.

e The result type of a scalar_expression is the type of the scalar value to which the expression
evaluates. The result type of a numeric scalar_expression is defined in section 4.8.6.

e The result type of an entity_type expression scalar expression is the Java class to which the
resulting abstract schema type corresponds.

e The result type of aggregate_expression is defined in section 4.8.5.

e The result type of a constructor_expression is the type of the class for which the constructor
is defined. The types of the arguments to the constructor are defined by the above rules.

4.8.2 Constructor Expressions in the SELECT Clause

A constructor may be used in the SELECT list to return an instance of a Java class. The specified class
is not required to be an entity or to be mapped to the database. The constructor name must be fully qual-
ified.

JSR-338 Maintenance Release 201 7/17/17

Oracle

Query Language

4.8.3

Java Persistence 2.2, Maintenance Release SELECT Clause

If an entity class name is specified as the constructor name in the SELECT NEW clause, the resulting
entity instances will be in either the new or the detached state, depending on whether a primary key is
retrieved for the constructed object.

If a single_valued_path_expression or identification_variable that is an argument to the constructor
references an entity, the resulting entity instance referenced by that single_valued_path_expression
or identification _variable will be in the managed state.

For example,

SELECT NEW com.acme.example.CustomerDetails (c.id, c.status, o.count)
FROM Customer c JOIN c.orders o
WHERE o.count > 100

Null Values in the Query Result

4.8.4

If the result of a query corresponds to an association field or state field whose value is null, that null
value is returned in the result of the query method. The IS NOT NULL construct can be used to elimi-
nate such null values from the result set of the query.

Note, however, that state field types defined in terms of Java numeric primitive types cannot produce

NULL values in the query result. A query that returns such a state field type as a result type must not
return a null value.

Embeddables in the Query Result

If the result of a query corresponds to an identification variable or state field whose value is an
embeddable, the embeddable instance returned by the query will not be in the managed state (i.e., it will
not be part of the state of any managed entity).

In the following example, the Address instances returned by the query will reference Phone
instances. While the Phone instances will be managed, the Address instances referenced by the
addr result variable will not be. Modifications to these embeddable instances will have no effect on
persistent state.

@Entity

public class Employee {
@Id int id;
Address address;

}

@Embeddable
public class Address {
String street;

@OneToOne Phone phone; // fetch=EAGER
}

7/17/17

202 JSR-338 Maintenance Release

Oracle

SELECT Clause

4.8.5

Java Persistence 2.2, Maintenance Release Query Language

@Entity
public class Phone {
@Id int id;

@0OneToOne (mappedBy="address.phone") Employee emp; // fetch=EAGER
}

SELECT e.address AS addr
FROM Employee e

Aggregate Functions in the SELECT Clause

The result of a query may be the result of an aggregate function applied to a path expression.

The following aggregate functions can be used in the SELECT clause of a query: AVG, COUNT, MAX,
MIN, SUM, aggregate functions defined in the database.

For all aggregate functions except COUNT, the path expression that is the argument to the aggregate
function must terminate in a state field. The path expression argument to COUNT may terminate in
either a state field or a association field, or the argument to COUNT may be an identification variable.
Arguments to the functions SUM and AVG must be numeric. Arguments to the functions MAX and
MIN must correspond to orderable state field types (i.e., numeric types, string types, character types, or
date types).
The Java type that is contained in the result of a query using an aggregate function is as follows:
¢ COUNT returns Long.
e MAX, MIN return the type of the state field to which they are applied.
® AVG returns Double.
e SUM returns Long when applied to state fields of integral types (other than Biglnteger); Dou-
ble when applied to state fields of floating point types; Bignteger when applied to state fields
of type BigInteger; and BigDecimal when applied to state fields of type BigDecimal.

Null values are eliminated before the aggregate function is applied, regardless of whether the keyword
DISTINCT is specified.

If SUM, AVG, MAX, or MIN is used, and there are no values to which the aggregate function can be
applied, the result of the aggregate function is NULL.

If COUNT is used, and there are no values to which COUNT can be applied, the result of the aggregate
function is 0.

The argument to an aggregate function may be preceded by the keyword DISTINCT to specify that
duplicate values are to be eliminated before the aggregate function is applied.[m

JSR-338 Maintenance Release 203 7/17/17

Oracle

Query Language Java Persistence 2.2, Maintenance Release SELECT Clause
The use of DISTINCT with COUNT is not supported for arguments of embeddable types or map entry
types.

The invocation of aggregate database functions, including user defined functions, is supported by means
of the FUNCTION operator. See section 4.6.17.3.
4.8.5.1 Examples
The following query returns the average order quantity:
SELECT AVG (o.quantity) FROM Order o
The following query returns the total cost of the items that John Smith has ordered.
SELECT SUM(l.price)
FROM Order o JOIN o.linelItems 1 JOIN o.customer c
WHERE c.lastname = ‘Smith’ AND c.firstname = ‘John’
The following query returns the total number of orders.
SELECT COUNT (o)
FROM Order o
The following query counts the number of items in John Smith’s order for which prices have been spec-
ified.
SELECT COUNT (l.price)
FROM Order o JOIN o.linelItems 1 JOIN o.customer c
WHERE c.lastname = ‘Smith’ AND c.firstname = ‘John’
Note that this is equivalent to:
SELECT COUNT (1)
FROM Order o JOIN o.linelItems 1 JOIN o.customer c
WHERE c.lastname = ‘Smith’ AND c.firstname = ‘John’
AND l.price IS NOT NULL
4.8.6 Numeric Expressions in the SELECT Clause
The type of a numeric expression in the query result is determined as follows:
An operand that corresponds to a persistent state field is of the same type as that persistent state field.
An operand that corresponds to one of arithmetic functions described in section 4.6.17.2.2 is of the type
defined by section 4.6.17.2.2.
An operand that corresponds to one of an aggregate functions described in section 4.8.5 is of the type
defined by section 4.8.5.
[73] Itis legal to specify DISTINCT with MAX or MIN, but it does not affect the result.
71717 204 JSR-338 Maintenance Release

Oracle

ORDER BY Clause

Java Persistence 2.2, Maintenance Release Query Language

The result of a case expression, coalesce expression, nullif expression, or arithmetic expression (+, -, *,

/) is determined by applying the following rule to its operands

[74]

If there is an operand of type Double or double, the result of the operation is of type Double;

otherwise, if there is an operand of type Float or float, the result of the operation is of type
Float;

otherwise, if there is an operand of type BigDecimal, the result of the operation is of type Big-
Decimal;

otherwise, if there is an operand of type Biglnteger, the result of the operation is of type Bigln-
teger, unless the operator is / (division), in which case the numeric result type is not further
defined;

otherwise, if there is an operand of type Long or long, the result of the operation is of type
Long, unless the operator is / (division), in which case the numeric result type is not further
defined;

otherwise, if there is an operand of integral type, the result of the operation is of type Integer,
unless the operator is / (division), in which case the numeric result type is not further defined.

Users should note that the semantics of the SQL division operation are not standard across
databases. In particular, when both operands are of integral types, the result of the division
operation will be an integral type in some databases, and an non-integral type in others. Por-
table applications should not assume a particular result type.

4.9 ORDER BY Clause

The ORDER BY clause allows the objects or values that are returned by the query to be ordered.

The syntax of the ORDER BY clause is

orderby clause ::= ORDER BY orderby_item {, orderby_item}*
orderby _item ::=

{ state_field_path_expression | general_identification _variable | result_variable }
[ASC | DESC]

An orderby_item must be one of the following:

1.

A state_field_path expression that evaluates to an orderable state field of an entity or
embeddable class abstract schema type designated in the SELECT clause by one of the follow-

ng:
e ageneral_identification_variable
e asingle_valued_object_path_expression

[74] In the case of a general or simple case expression, these are the scalar expressions of the THEN and ELSE clauses.

JSR-338 Maintenance Release 205 7/17/17

Oracle

Query Language

Java Persistence 2.2, Maintenance Release ORDER BY Clause

2. A state_field _path_expression that evaluates to the same state field of the same entity or
embeddable abstract schema type as a state_field _path_expression in the SELECT clause

3. A general_identification_variable that evaluates to the same map field of the same entity or
embeddable abstract schema type as a general_identification variable in the SELECT
clause

4. A result_variable that refers to an orderable item in the SELECT clause for which the same

result_variable has been specified. This may be the result of an aggregate_expression, a
scalar_expression, or a state_field_path_expression in the SELECT clause.

For example, the four queries below are legal.

SELECT o

FROM Customer c JOIN c.orders o JOIN c.address a
WHERE a.state = ‘CA'

ORDER BY o.quantity DESC, o.totalcost

SELECT o.quantity, a.zipcode

FROM Customer c¢ JOIN c.orders o JOIN c.address a
WHERE a.state = ‘CA’

ORDER BY o.quantity, a.zipcode

SELECT o.quantity, o.cost*1.08 AS taxedCost, a.zipcode
FROM Customer c¢ JOIN c.orders o JOIN c.address a

WHERE a.state = ‘CA’ AND a.county = ‘Santa Clara’
ORDER BY o.quantity, taxedCost, a.zipcode

SELECT AVG(o.quantity) as g, a.zipcode

FROM Customer c JOIN c.orders o JOIN c.address a
WHERE a.state = ‘CA'

GROUP BY a.zipcode

ORDER BY g DESC

The following two queries are not legal because the orderby item is not reflected in the SELECT
clause of the query.

SELECT p.product name

FROM Order o JOIN o.linelItems 1 JOIN l.product p JOIN o.customer c
WHERE c.lastname = ‘Smith’ AND c.firstname = ‘John’

ORDER BY p.price

SELECT p.product name

FROM Order o, IN(o.linelItems) 1 JOIN o.customer c
WHERE c.lastname = ‘Smith’ AND c.firstname = ‘John’
ORDER BY o.quantity

If more than one orderby_item is specified, the left-to-right sequence of the orderby item clements
determines the precedence, whereby the leftmost orderby _item has highest precedence.

The keyword ASC specifies that ascending ordering be used for the associated orderby_item; the key-
word DESC specifies that descending ordering be used. Ascending ordering is the default.

7/17/17

206 JSR-338 Maintenance Release

Oracle

Bulk Update and Delete Operations Java Persistence 2.2, Maintenance Release Query Language

4.10

SQL rules for the ordering of null values apply: that is, all null values must appear before all non-null
values in the ordering or all null values must appear after all non-null values in the ordering, but it is not
specified which.

The ordering of the query result is preserved in the result of the query execution method if the ORDER
BY clause is used.

Bulk Update and Delete Operations

Bulk update and delete operations apply to entities of a single entity class (together with its subclasses,
if any). Only one entity abstract schema type may be specified in the FROM or UPDATE clause.

The syntax of these operations is as follows:

update_statement ::= update_clause [where_clause]
update_clause ::= UPDATE entity _name [[AS] identification_variable]
SET update_item {, update_item}*
update_item ::= [identification_variable.]{single valued _embeddable _object field.}*
{state_field | single_valued _object field} = new_value
new_value ::=
scalar_expression |
simple_entity expression |
NULL

delete_statement ::= delete_clause [where_clause]
delete_clause ::= DELETE FROM entity name [[AS] identification_variable]

The syntax of the WHERE clause is described in Section 4.5.

A delete operation only applies to entities of the specified class and its subclasses. It does not cascade to
related entities.

The new_value specified for an update operation must be compatible in type with the field to which it
is assigned.

Bulk update maps directly to a database update operation, bypassing optimistic locking checks. Portable
applications must manually update the value of the version column, if desired, and/or manually validate
the value of the version column.

The persistence context is not synchronized with the result of the bulk update or delete.

Caution should be used when executing bulk update or delete operations because they may result in
inconsistencies between the database and the entities in the active persistence context. In general, bulk
update and delete operations should only be performed within a transaction in a new persistence con-
text or before fetching or accessing entities whose state might be affected by such operations.

JSR-338 Maintenance Release 207 7/17/17

Oracle

Query Language Java Persistence 2.2, Maintenance Release Null Values
Examples:
DELETE
FROM Customer c
WHERE c.status = ‘inactive’
DELETE
FROM Customer c
WHERE c.status = ‘inactive’
AND c.orders IS EMPTY
UPDATE Customer c
SET c.status = ‘outstanding’
WHERE c.balance < 10000
UPDATE Employee e
SET e.address.building = 22
WHERE e.address.building = 14
AND e.address.city = ‘Santa Clara’
AND e.project = ‘Java EE’
4.11 Null Values
When the target of a reference does not exist in the database, its value is regarded as NULL. SQL NULL
semantics [2] defines the evaluation of conditional expressions containing NULL values.
The following is a brief description of these semantics:
e Comparison or arithmetic operations with a NULL value always yield an unknown value.
e Two NULL values are not considered to be equal, the comparison yields an unknown value.
e Comparison or arithmetic operations with an unknown value always yield an unknown value.
e The IS NULL and IS NOT NULL operators convert a NULL state field or single-valued object
field value into the respective TRUE or FALSE value.
* Boolean operators use three valued logic, defined by Table 1, Table 2, and Table 3.
Table 1 Definition of the AND Operator
IAND T |F U
T T |F U
F F F
U U |F U
71717 208 JSR-338 Maintenance Release

Oracle

Equality and Comparison Semantics Java Persistence 2.2, Maintenance Release Query Language

Table 2

Definition of the OR Operator

OR T |[F |U
T T (T |T
F T |F U
U T (U |U

Table 3

4.12

Definition of the NOT Operator

NOT

T

F T
U U

Note: The Java Persistence query language defines the empty string, *’, as a string with 0 length, which
is not equal to a NULL value. However, NULL values and empty strings may not always be distin-
guished when queries are mapped to some databases. Application developers should therefore not rely
on the semantics of query comparisons involving the empty string and NULL value.

Equality and Comparison Semantics

Only the values of like types are permitted to be compared. A type is like another type if they corre-
spond to the same Java language type, or if one is a primitive Java language type and the other is the
wrapped Java class type equivalent (e.g., int and Integer are like types in this sense). There is one
exception to this rule: it is valid to compare numeric values for which the rules of numeric promotion
apply. Conditional expressions attempting to compare non-like type values are disallowed except for
this numeric case.

Note that the arithmetic operators and comparison operators are permitted to be applied to
state fields and input parameters of the wrapped Java class equivalents to the primitive

numeric Java types.

Two entities of the same abstract schema type are equal if and only if they have the same primary key
value.

Only equality/inequality comparisons over enums are required to be supported.

Comparisons over instances of embeddable class or map entry types are not supported.

JSR-338 Maintenance Release 209 7/17/17

Oracle

Query Language

4.13

Java Persistence 2.2, Maintenance Release Examples

Examples

4.13.1

The following examples illustrate the syntax and semantics of the Java Persistence query language.
These examples are based on the example presented in Section 4.3.2.

Simple Queries

4.13.2

Find all orders:

SELECT o
FROM Order o

Find all orders that need to be shipped to California:

SELECT o

FROM Order o

WHERE o.shippingAddress.state = ‘CA’

Find all states for which there are orders:

SELECT DISTINCT o.shippingAddress.state
FROM Order o

Queries with Relationships

Find all orders that have line items:

SELECT DISTINCT o
FROM Order o JOIN o.linelItems 1

Note that the result of this query does not include orders with no associated line items. This query can
also be written as:

SELECT o
FROM Order o
WHERE o.linelItems IS NOT EMPTY

Find all orders that have no line items:

SELECT o
FROM Order o
WHERE o.linelItems IS EMPTY

Find all pending orders:

SELECT DISTINCT o
FROM Order o JOIN o.lineltems 1
WHERE 1.shipped = FALSE

7/17/17

210 JSR-338 Maintenance Release

Oracle

Examples Java Persistence 2.2, Maintenance Release Query Language

Find all orders in which the shipping address differs from the billing address. This example assumes
that the application developer uses two distinct entity types to designate shipping and billing addresses.

SELECT o

FROM Order o

WHERE

NOT (o.shippingAddress.state = o.billingAddress.state AND
o.shippingAddress.city = o.billingAddress.city AND
o.shippingAddress.street = o.billingAddress.street)

If the application developer uses a single entity type in two different relationships for both the shipping
address and the billing address, the above expression can be simplified based on the equality rules
defined in Section 4.12. The query can then be written as:

SELECT o
FROM Order o
WHERE o.shippingAddress <> o.billingAddress

The query checks whether the same entity abstract schema type instance (identified by its primary key)
is related to an order through two distinct relationships.

4.13.3 Queries Using Input Parameters

The following query finds the orders for a product whose name is designated by an input parameter:

SELECT DISTINCT o
FROM Order o JOIN o.lineltems 1
WHERE 1l.product.name = 2?1

For this query, the input parameter must be of the type of the state field name, i.e., a string.

JSR-338 Maintenance Release 211 7/17/17

Oracle

Query Language

Java Persistence 2.2, Maintenance Release

4.14 BNF

BNF

BNF notation summary:
e { ..} grouping
e [...] optional constructs
¢ boldface keywords
® *zero or more
e +one or more
¢ | alternates
The following is the BNF for the Java Persistence query language.

QL_statement ::= select_statement | update_statement | delete_statement
select_statement ::= select_clause from_clause [where _clause] [groupby_clause]
[having_clause] [orderby clause]
update_statement ::= update_clause [where_clause]
delete_statement ::= delete_clause [where_clause]
from_clause ::=
FROM identification variable_declaration
{, {identification_variable declaration | collection_member_declaration}}*
identification_variable_ _declaration ::= range_variable _declaration { join | fetch_join }*
range_variable declaration ::= entity _name [AS] identification_variable
join ::= join_spec join_association_path_expression [AS] identification_variable
[join_condition]
fetch_join ::= join_spec FETCH join_association_path_expression
join_spec::= [LEFT [OUTER] | INNER] JOIN
Join_condition ::= ON conditional_expression
Join_association_path_expression ::=
join_collection_valued _path_expression |
join_single_valued_path _expression |
TREAT(join_collection_valued path_expression AS subtype) |
TREAT(join_single _valued_path_expression AS subtype)
Join_collection_valued_path_expression::=
identification_variable.{single_valued _embeddable_object field.}*collection valued_field
Join_single_valued_path_expression::=

identification_variable.{single _valued _embeddable_object field.}*single_valued_object field

collection_member_declaration ::=

IN (collection_valued _path_expression) [AS] identification_variable
qualified_identification_variable :: =

map_field_identification_variable |

ENTRY (identification_variable)
map_field_identification_variable :: =

KEY (identification_variable) |

7/17/17

2 1 2 JSR-338 Maintenance Release

Oracle

BNF

Java Persistence 2.2, Maintenance Release Query Language

VALUE((identification_variable)
single_valued_path_expression ::=

qualified_identification_variable |

TREAT(qualified_identification_variable AS subtype) |

state_field_path_expression |

single_valued_object_path_expression
general_identification_variable ::=

identification_variable |

map_field_identification_variable
general_subpath ::= simple_subpath | treated_subpath{.single_valued_object field}*
simple_subpath ::=

general_identification_variable |

general_identification _variable{.single_valued_object field}*
treated_subpath ::= TREAT(general_subpath AS subtype)
state_field_path_expression ::= general_subpath.state_field
state_valued_path_expression ::=

state_field_path_expression | general_identification_variable
single_valued_object_path expression ::= general_subpath.single valued_object field
collection_valued_path_expression ::= general_subpath.{collection_valued_field
update_clause ::= UPDATE entity _name [[AS] identification_variable]

SET update_item {, update_item}*
update_item ::= [identification_variable.]{single valued _embeddable _object field.}*
{state_field | single_valued_object field} = new_value

new_value ::=

scalar_expression |

simple_entity expression |

NULL
delete_clause ::= DELETE FROM entity name [[AS] identification_variable]
select_clause ::= SELECT [DISTINCT] select _item {, select_item}*
select_item ::= select_expression [[AS] result_variable]
select_expression ::=

single _valued_path_expression |

scalar_expression |

aggregate_expression |

identification_variable |

OBJECT (identification variable) |

constructor_expression
constructor_expression ::=

NEW constructor_name (constructor_item {, constructor_item}*)
constructor_item ::=

single_valued_path_expression |

scalar_expression |

aggregate_expression |

identification_variable
aggregate_expression ::=

{ AVG | MAX | MIN | SUM } (/DISTINCT] state_valued path_expression) |

COUNT (/DISTINCT] identification _variable | state_valued _path_expression |

single_valued_object_path_expression) |
function_invocation

JSR-338 Maintenance Release 21 3

7/17/17

Oracle

Query Language

Java Persistence 2.2, Maintenance Release BNF

where_clause ::= WHERE conditional_expression
groupby clause ::= GROUP BY groupby _item {, groupby_item}*
groupby item ::= single_valued _path_expression | identification_variable
having_clause ::= HAVING conditional_expression
orderby clause ::= ORDER BY orderby _item {, orderby_item}*
orderby item ::=
state_field_path_expression | general_identification_variable | result_variable
[ASC | DESC]
subquery ::= simple_select_clause subquery _from_clause [where_clause]
[groupby clause] [having _clause]
subquery from_clause ::=
FROM subselect _identification_variable declaration
{, subselect_identification_variable _declaration |
collection_member_declaration}*
subselect _identification_variable_declaration ::=
identification_variable declaration |
derived_path_expression [AS] identification_variable {join}*|
derived_collection_member_declaration
derived_path_expression ::=
general_derived_path.single valued_object field |
general_derived_path.collection _valued_field
general_derived_path ::=
simple_derived_path |
treated_derived_path{.single_valued_object field}*
simple_derived_path ::= superquery_identification_variable{.single _valued_object field}*
treated_derived_path ::= TREAT(general_derived_path AS subtype)
derived_collection_member_declaration ::=
IN superquery_identification_variable.{single_valued_object field.}*collection _valued_field
simple_select_clause ::= SELECT [DISTINCT] simple_select_expression
simple_select_expression::=
single _valued_path_expression |
scalar_expression |
aggregate_expression |
identification_variable
scalar_expression ::=
arithmetic_expression |
string_expression |
enum_expression |
datetime_expression |
boolean_expression |
case_expression |
entity_type_expression
conditional_expression ::= conditional_term | conditional_expression OR conditional_term
conditional_term ::= conditional_factor | conditional _term AND conditional_factor
conditional_factor ::= [NOT] conditional _primary
conditional_primary ::= simple_cond_expression | (conditional_expression)
simple_cond_expression ::=
comparison_expression |
between_expression |
in_expression |

7/17/17

2 1 4 JSR-338 Maintenance Release

Oracle

BNF

Java Persistence 2.2, Maintenance Release Query Language

like_expression |
null_comparison_expression |
empty_collection_comparison_expression |
collection_member_expression |
exists_expression
between_expression ::=
arithmetic_expression [NOT] BETWEEN
arithmetic_expression AND arithmetic_expression |
string_expression [NOT] BETWEEN string_expression AND string_expression |
datetime_expression [NOT] BETWEEN
datetime_expression AND datetime_expression
in_expression ::=
{state_valued_path_expression | type_discriminator} [NOT] IN
{ (in_item {, in_item}*) | (subquery) | collection_valued_input_parameter }
in_item ::= literal | single_valued_input_parameter
like_expression ::=
string_expression [NOT] LIKE pattern_value [ESCAPE escape_character]
null_comparison_expression ::=
{single_valued _path_expression | input_parameter} IS [NOT] NULL
empty_collection_comparison_expression ::=
collection_valued_path_expression 1S [NOT] EMPTY
collection_member_expression ::= entity_or_value_expression
/NOT] MEMBER [OF] collection_valued_path_expression
entity_or_value_expression ::=
single_valued_object path expression |
state_field_path_expression |
simple_entity_or_value_expression
simple_entity_or_value_expression ::=
identification_variable |
input_parameter |
literal
exists_expression::= [NOT] EXISTS (subquery)
all_or_any expression ::= { ALL | ANY | SOME} (subquery)
comparison_expression ::=
string_expression comparison_operator {string_expression | all_or_any_expression} |
boolean_expression { =|<>} {boolean _expression | all_or_any_expression} |
enum_expression { =|<>} {enum_expression | all_or_any expression} |
datetime_expression comparison_operator
{datetime_expression | all_or_any_expression} |
entity_expression { = | <>} {entity_expression | all_or_any_expression} |
arithmetic_expression comparison_operator
{arithmetic_expression | all_or_any expression} |
entity type expression { =|<>} entity type expression}
comparison_operator ;==|>|>=|<|<=| <>
arithmetic_expression ::=
arithmetic_term | arithmetic_expression { + | - } arithmetic_term
arithmetic_term ::= arithmetic_factor | arithmetic_term {* | I } arithmetic_factor
arithmetic_factor ::= [{ + | - }] arithmetic_primary

JSR-338 Maintenance Release 21 b) 7/17/17

Oracle

Query Language

Java Persistence 2.2, Maintenance Release

arithmetic_primary ::=
state_valued_path_expression |
numeric_literal |
(arithmetic_expression) |
input_parameter |
functions_returning_numerics |
aggregate_expression |
case_expression |
function_invocation |
(subquery)

string_expression ::=
state valued_path_expression |
string_literal |
input_parameter |
functions_returning_strings |
aggregate_expression |
case_expression |
function_invocation |
(subquery)

datetime_expression ::=
state valued_path_expression |
input_parameter |
functions_returning_datetime |
aggregate_expression |
case_expression |
function_invocation |
date_time_timestamp_literal |
(subquery)

boolean_expression ::=
state_valued_path_expression |
boolean_literal |
input_parameter |
case_expression |
function_invocation |
(subquery)

enum_expression ::=
state_valued_path_expression |
enum_literal |
input_parameter |
case_expression |
(subquery)

entity_expression ::=

BNF

single_valued_object_path _expression | simple_entity expression

simple_entity _expression ::=
identification_variable |
input_parameter

entity_type_expression ::=
type_discriminator |
entity_type_literal |
input_parameter

7/17/17

216

JSR-338 Maintenance Release

Oracle

BNF

Java Persistence 2.2, Maintenance Release

type_discriminator ::=
TYPE(general_identification variable |
single_valued_object_path expression |
input_parameter)
functions_returning_numerics::=
LENGTH(string_expression) |

LOCATE(string_expression, string_expression[, arithmetic_expression]) |

ABS(arithmetic_expression) |
SQRT(arithmetic_expression) |
MOD(arithmetic_expression, arithmetic_expression) |
SIZE(collection_valued_path_expression) |
INDEX(identification_variable)
functions_returning_datetime ::=
CURRENT_DATE |
CURRENT_TIME |
CURRENT_TIMESTAMP
functions_returning_strings ::=
CONCAT(string_expression, string_expression {, string_expression}™) |

Query Language

SUBSTRING(string_expression, arithmetic_expression [, arithmetic_expression]) |

TRIM([[trim_specification] [trim_character] FROM] string_expression) |

LOWER(string_expression) |

UPPER(string_expression)
trim_specification ::= LEADING | TRAILING | BOTH
function_invocation::= FUNCTION(function_name {, function_arg}*)
function_arg ::=

literal |

state_valued_path_expression |

input_parameter |

scalar_expression
case_expression ::=

general_case_expression |

simple_case_expression |

coalesce_expression |

nullif_expression
general_case_expression::=

CASE when_clause {when_clause}* ELSE scalar_expression END
when_clause::= WHEN conditional_expression THEN scalar_expression
simple_case_expression::=

CASE case_operand simple_when_clause {simple_when_clause}*

ELSE scalar_expression

END
case_operand::= state_valued_path _expression | type_discriminator
simple_when_clause::= WHEN scalar_expression THEN scalar_expression
coalesce_expression::= COALESCE(scalar_expression {, scalar_expression}+)
nullif_expression::= NULLIF(scalar_expression, scalar_expression)

JSR-338 Maintenance Release 217

7/17/17

Oracle

Query Language Java Persistence 2.2, Maintenance Release BNF

71717 218 JSR-338 Maintenance Release

Oracle

Metamodel API Interfaces Java Persistence 2.2, Maintenance Release Metamodel API

amers Metamodel API

This specification provides a set of interfaces for dynamically accessing the metamodel corresponding
to the managed classes of a persistence unit.

5.1 Metamodel API Interfaces

The javax.persistence.metamodel interfaces provide for dynamically accessing the meta-
model of the persistent state and relationships of the managed classes of a persistence unit.

The metamodel can be accessed through the EntityManagerFactory or EntityManager
getMetamodel methods.

The metamodel API may be extended to cover object/relational mapping information in a future release
of this specification.

JSR-338 Maintenance Release 219 7/17/17

Oracle

Metamodel API

Java Persistence 2.2, Maintenance Release Metamodel API Interfaces

5.1.1 Metamodel Interface

package javax.persistence.metamodel;

import Jjava.util.Set;
* Provides access to the metamodel of persistent
* entities in the persistence unit.

public interface Metamodel ({

/**
* Return the metamodel entity type representing the entity.
* (@param cls the type of the represented entity
* (@return the metamodel entity type
* (@throws IllegalArgumentException if not an entity
*/

<X> EntityType<X> entity(Class<X> cls);

*

* Return the metamodel managed type representing the

* entity, mapped superclass, or embeddable class.

* (@param cls the type of the represented managed class

* (@return the metamodel managed type

* (@throws IllegalArgumentException if not a managed class

<X> ManagedType<X> managedType (Class<X> cls) ;

*

* Return the metamodel embeddable type representing the

* embeddable class.

* (@param cls the type of the represented embeddable class

* (@return the metamodel embeddable type

* (@throws IllegalArgumentException if not an embeddable class

<X> EmbeddableType<X> embeddable (Class<X> cls);

Return the metamodel managed types.
* (@return the metamodel managed types
*/

Set<ManagedType<?>> getManagedTypes (),

/**

* Return the metamodel entity types.
* @return the metamodel entity types
*/

Set<EntityType<?>> getEntities();

/**
* Return the metamodel embeddable types. Returns empty set
* if there are no embeddable types.
* @return the metamodel embeddable types
*/
Set<EmbeddableType<?>> getEmbeddables () ;

7/17/17

220 JSR-338 Maintenance Release

Oracle

Metamodel API Interfaces Java Persistence 2.2, Maintenance Release Metamodel API

5.1.2 Type Interface

package javax.persistence.metamodel;

/**
* Instances of the type Type represent persistent object

* or attribute types.
*

* @param <X> The type of the represented object or attribute
*/
public interface Type<X> {

public static enum PersistenceType {
ENTITY, EMBEDDABLE, MAPPED SUPERCLASS, BASIC

}
/‘k‘k

* Return the persistence type.
* (@return persistence type
*/

PersistenceType getPersistenceType () ;

/**
* Return the represented Java type.
* (@return Java type
*/

Class<X> getJavaType () ;

JSR-338 Maintenance Release 221

7/17/17

Oracle

Metamodel API

Java Persistence 2.2, Maintenance Release Metamodel API Interfaces

5.1.3 ManagedType Interface

package Jjavax.persistence.metamodel;
import Jjava.util.Set;

/**
* Instances of the type ManagedType represent entity, mapped
* superclass, and embeddable types.
*
* @param <X> The represented type.
*/
public interface ManagedType<X> extends Type<X> ({

/**

* Return the attributes of the managed type.
* (@return attributes of the managed type

*/

Set<Attribute<? super X, ?>> getAttributes();

/**
* Return the attributes declared by the managed type.

* Returns empty set if the managed type has no declared
* attributes.

* Q@return declared attributes of the managed type

*/

Set<Attribute<X, ?>> getDeclaredAttributes/():;

*

* Return the single-valued attribute of the managed

* type that corresponds to the specified name and Java type.
* (@param name the name of the represented attribute

* (@param type the type of the represented attribute

* Q@return single-valued attribute with given name and type

* (@throws IllegalArgumentException if attribute of the given
* name and type is not present in the managed type

<Y> SingularAttribute<? super X, Y> getSingularAttribute (
String name, Class<Y> type);

/**
* Return the single-valued attribute declared by the
* managed type that corresponds to the specified name and
* Java type.
* (@param name the name of the represented attribute
* (@param type the type of the represented attribute
* (@return declared single-valued attribute of the given
* name and type
* Q@throws IllegalArgumentException if attribute of the given
* name and type is not declared in the managed type
*
/

<Y> SingularAttribute<X, Y> getDeclaredSingularAttribute(
String name, Class<Y> type);

7/17/17

222 JSR-338 Maintenance Release

Oracle

Metamodel API Interfaces

/**
*
*

*
*

*/

Java Persistence 2.2, Maintenance Release Metamodel API

Return the single-valued attributes of the managed type.
Returns empty set if the managed type has no single-valued
attributes.

@return single-valued attributes

Set<SingularAttribute<? super X, ?>> getSingularAttributes();

/**

*
*
*
*
*

*/

Return the single-valued attributes declared by the managed
type.

Returns empty set if the managed type has no declared
single-valued attributes.

@return declared single-valued attributes

Set<SingularAttribute<X, ?>> getDeclaredSingularAttributes/();

/**

bR R R . S

A
M % %
Vo~

*

~
X% X b o X X o

*

*
~

<E>

Return the Collection-valued attribute of the managed type

that corresponds to the specified name and Java element type.

@param name the name of the represented attribute

@param elementType the element type of the represented

attribute

@return CollectionAttribute of the given name and element
type

@throws IllegalArgumentException if attribute of the given
name and type is not present in the managed type

CollectionAttribute<? super X, E> getCollection/(
String name, Class<E> elementType);

Return the Collection-valued attribute declared by the

managed type that corresponds to the specified name and Java

element type.

@param name the name of the represented attribute

@param elementType the element type of the represented

attribute

@return declared CollectionAttribute of the given name and
element type

@throws IllegalArgumentException if attribute of the given
name and type is not declared in the managed type

CollectionAttribute<X, E> getDeclaredCollection (
String name, Class<E> elementType);

Return the Set-valued attribute of the managed type that

corresponds to the specified name and Java element type.

@param name the name of the represented attribute

@param elementType the element type of the represented

attribute

@return SetAttribute of the given name and element type

@throws IllegalArgumentException if attribute of the given
name and type is not present in the managed type

SetAttribute<? super X, E> getSet (String name,
Class<E> elementType) ;

JSR-338 Maintenance Release

223 71717

Oracle

Metamodel API

LR R I S
*

*

*
~

<E>

L I R . S
*

*

*
~

<E>

E R R . R S S .
*

*

*
~

<E>

X0k X b X% ok X ok X o X ot
*

A
~
S~

Java Persistence 2.2, Maintenance Release Metamodel API Interfaces

Return the Set-valued attribute declared by the managed type
that corresponds to the specified name and Java element type.
@param name the name of the represented attribute
@param elementType the element type of the represented
attribute
@return declared SetAttribute of the given name and
element type
@throws IllegalArgumentException if attribute of the given
name and type is not declared in the managed type

SetAttribute<X, E> getDeclaredSet (String name,
Class<E> elementType) ;

Return the List-valued attribute of the managed type that

corresponds to the specified name and Java element type.

@param name the name of the represented attribute

@param elementType the element type of the represented

attribute

@return ListAttribute of the given name and element type

@throws IllegalArgumentException if attribute of the given
name and type is not present in the managed type

ListAttribute<? super X, E> getList (String name,
Class<E> elementType) ;

Return the List-valued attribute declared by the managed

type that corresponds to the specified name and Java

element type.

@param name the name of the represented attribute

@param elementType the element type of the represented

attribute

@return declared ListAttribute of the given name and
element type

@throws IllegalArgumentException if attribute of the given
name and type is not declared in the managed type

ListAttribute<X, E> getDeclaredList (String name,
Class<E> elementType) ;

Return the Map-valued attribute of the managed type that

corresponds to the specified name and Java key and value

types.

@param name the name of the represented attribute

@param keyType the key type of the represented attribute

@param valueType the value type of the represented attribute

@return MapAttribute of the given name and key and wvalue

types

@throws IllegalArgumentException if attribute of the given
name and type is not present in the managed type

V> MapAttribute<? super X, K, V> getMap (String name,
Class<K> keyType,
Class<V> valueType) ;

7/17/17

224 JSR-338 Maintenance Release

Oracle

Metamodel API Interfaces

X% X b ok % X ok b X X X
~ *

A
~

X % X o %

*

*/

Java Persistence 2.2, Maintenance Release Metamodel API

Return the Map-valued attribute declared by the managed
type that corresponds to the specified name and Java key
and value types.
@param name the name of the represented attribute
@param keyType the key type of the represented attribute
@param valueType the value type of the represented attribute
@return declared MapAttribute of the given name and key
and value types
@throws IllegalArgumentException if attribute of the given
name and type is not declared in the managed type

V> MapAttribute<X, K, V> getDeclaredMap (String name,
Class<K> keyType,
Class<V> valueType) ;

Return all multi-valued attributes (Collection-, Set-,
List-, and Map-valued attributes) of the managed type.
Returns empty set if the managed type has no multi-valued
attributes.

@return Collection-, Set-, List-, and Map-valued attributes

Set<PluralAttribute<? super X, ?, ?>> getPluralAttributes|();

*

/

% X ok o X X

*

*/

Return all multi-valued attributes (Collection-, Set-,

List-, and Map-valued attributes) declared by the

managed type.

Returns empty set if the managed type has no declared

multi-valued attributes.

@return declared Collection-, Set-, List-, and Map-valued
attributes

Set<PluralAttribute<X, ?, ?>> getDeclaredPluralAttributes/();

//String-based:

*

/

X % X o % %

*

*/

Return the attribute of the managed

type that corresponds to the specified name.

@param name the name of the represented attribute

@return attribute with given name

@throws IllegalArgumentException if attribute of the given
name is not present in the managed type

Attribute<? super X, ?> getAttribute (String name) ;

*

/

X% ok ok X X

*

*/

Return the attribute declared by the managed

type that corresponds to the specified name.

@param name the name of the represented attribute

@return attribute with given name

@throws IllegalArgumentException if attribute of the given
name is not declared in the managed type

Attribute<X, ?> getDeclaredAttribute (String name) ;

JSR-338 Maintenance Release

225 71717

Oracle

Metamodel API

Java Persistence 2.2, Maintenance Release Metamodel API Interfaces

/**
* Return the single-valued attribute of the managed type that
* corresponds to the specified name.
* (@param name the name of the represented attribute
* (@return single-valued attribute with the given name
* (@throws IllegalArgumentException if attribute of the given
* name i1s not present in the managed type
*
/

SingularAttribute<? super X, ?> getSingularAttribute (
String name) ;

/**
* Return the single-valued attribute declared by the managed
* type that corresponds to the specified name.
* (@param name the name of the represented attribute
* (@return declared single-valued attribute of the given
* name
* (@throws IllegalArgumentException if attribute of the given
* name i1s not declared in the managed type
*
/

SingularAttribute<X, ?> getDeclaredSingularAttribute (
String name) ;

/**
* Return the Collection-valued attribute of the managed type
* that corresponds to the specified name.
* (@param name the name of the represented attribute
* (@return CollectionAttribute of the given name
* Q@throws IllegalArgumentException if attribute of the given
* name i1s not present in the managed type
*/
CollectionAttribute<? super X, ?> getCollection(String name);
/**

* Return the Collection-valued attribute declared by the

* managed type that corresponds to the specified name.

* (@param name the name of the represented attribute

* Q@return declared CollectionAttribute of the given name

* (@throws IllegalArgumentException if attribute of the given

* name is not declared in the managed type

*/
CollectionAttribute<X, ?> getDeclaredCollection (String name) ;
/**

* Return the Set-valued attribute of the managed type that

* corresponds to the specified name.

* (@param name the name of the represented attribute

* (@return SetAttribute of the given name

* (@throws IllegalArgumentException if attribute of the given

* name 1s not present in the managed type

*/

SetAttribute<? super X, ?> getSet (String name);

7/17/17

226 JSR-338 Maintenance Release

Oracle

Metamodel API Interfaces

Java Persistence 2.2, Maintenance Release Metamodel API

/%
* Return the Set-valued attribute declared by the managed type
* that corresponds to the specified name.
* (@param name the name of the represented attribute
* Q@return declared SetAttribute of the given name
* (@throws IllegalArgumentException if attribute of the given
* name is not declared in the managed type
*/
SetAttribute<X, ?> getDeclaredSet (String name) ;
/**
* Return the List-valued attribute of the managed type that
* corresponds to the specified name.
* (@param name the name of the represented attribute
* (@return ListAttribute of the given name
* (@throws IllegalArgumentException if attribute of the given
* name 1s not present in the managed type
*/
ListAttribute<? super X, ?> getlList(String name);
/**

* Return the List-valued attribute declared by the managed

* type that corresponds to the specified name.
* (@param name the name of the represented attribute
* (@return declared ListAttribute of the given name
* Q@throws IllegalArgumentException if attribute of the given
* name i1s not declared in the managed type
*/
ListAttribute<X, ?> getDeclaredList (String name) ;
/**
* Return the Map-valued attribute of the managed type that
* corresponds to the specified name.
* (@param name the name of the represented attribute
* (@return MapAttribute of the given name
* (@throws IllegalArgumentException if attribute of the given
* name i1s not present in the managed type
*/
MapAttribute<? super X, ?, ?> getMap (String name) ;
/**
* Return the Map-valued attribute declared by the managed
* type that corresponds to the specified name.
* (@param name the name of the represented attribute
* (@return declared MapAttribute of the given name
* (@throws IllegalArgumentException if attribute of the given
* name is not declared in the managed type
*/

MapAttribute<X, ?, ?> getDeclaredMap (String name) ;

JSR-338 Maintenance Release 227 7/17/17

Oracle

Metamodel API

Java Persistence 2.2, Maintenance Release Metamodel API Interfaces

5.1.4 IdentifiableType Interface

package javax.persistence.metamodel;
import Jjava.util.Set;

/**

* Instances of the type IdentifiableType represent entity or
* mapped superclass types.

*

* @param <X> The represented entity or mapped superclass type.
*/
public interface IdentifiableType<X> extends ManagedType<X> {

/**
* Return the attribute that corresponds to the id attribute of
* the entity or mapped superclass.
* (@param type the type of the represented id attribute
* (@return id attribute
* (@throws IllegalArgumentException if id attribute of the given
* type is not present in the identifiable type or if
* the identifiable type has an id class
*/
<Y> SingularAttribute<? super X, Y> getId(Class<Y¥> type);
/**
* Return the attribute that corresponds to the id attribute
* declared by the entity or mapped superclass.
* (@param type the type of the represented declared
* id attribute
* (@return declared id attribute
* (@throws IllegalArgumentException if id attribute of the given
* type is not declared in the identifiable type or if
* the identifiable type has an id class
*/
<Y> SingularAttribute<X, Y> getDeclaredId(Class<Y> type);
/xx

*

* Return the attribute that corresponds to the version

* attribute of the entity or mapped superclass.

* (@param type the type of the represented version attribute

* (@return version attribute

* (@throws IllegalArgumentException if version attribute of the

* given type is not present in the identifiable type
*/
<Y> SingularAttribute<? super X, Y> getVersion (Class<Y> type);

*
* Return the attribute that corresponds to the version

* attribute declared by the entity or mapped superclass.

* (@param type the type of the represented declared version

* attribute

* (@return declared version attribute

* @throws IllegalArgumentException if version attribute of the
* type is not declared in the identifiable type

<Y> SingularAttribute<X, Y> getDeclaredVersion (Class<Y> type);

7/17/17

228 JSR-338 Maintenance Release

Oracle

Metamodel API Interfaces Java Persistence 2.2, Maintenance Release Metamodel API

/ * *

* Return the identifiable type that corresponds to the most

* specific mapped superclass or entity extended by the entity
* or mapped superclass.

* (@return supertype of identifiable type or null if no

* such supertype

*/
IdentifiableType<? super X> getSupertype():;
/ * *

* Whether the identifiable type has a single id attribute.

* Returns true for a simple id or embedded id; returns false
* for an idclass.

* Q@return boolean indicating whether the identifiable

* type has a single id attribute

*/

boolean hasSingleIdAttribute();

/**
* Whether the identifiable type has a version attribute.
* (@return boolean indicating whether the identifiable

* type has a version attribute
*/
boolean hasVersionAttribute () ;
/**
* Return the attributes corresponding to the id class of the
* identifiable type.
* @return id attributes
* @throws IllegalArgumentException if the identifiable type
* does not have an id class
*/

Set<SingularAttribute<? super X, ?>> getIdClassAttributes();

/**
* Return the type that represents the type of the id.
* (@return type of id
*/

Type<?> getIdType () ;

JSR-338 Maintenance Release 229 7/17/17

Oracle

Metamodel API

Java Persistence 2.2, Maintenance Release Metamodel API Interfaces

5.1.5 EntityType Interface

5.1.6

package javax.persistence.metamodel;

/**
* Instances of the type EntityType represent entity types.

*

* @param <X> The represented entity type.
*/
public interface EntityType<X>
extends IdentifiableType<X>, Bindable<X> {

/**

* Return the entity name.
* Q@return entity name

*/

String getName () ;

EmbeddableType Interface

5.1.7

package javax.persistence.metamodel;

/**
* Instances of the type EmbeddableType represent embeddable types.

*

* (@param <X> The represented type.
*/
public interface EmbeddableType<X> extends ManagedType<X> {}

MappedSuperclassType Interface

package Jjavax.persistence.metamodel;

/**

* Instances of the type MappedSuperclassType represent mapped
* superclass types.

*

* (@param <X> The represented entity type
*/
public interface MappedSuperclassType<X>
extends IdentifiableType<X> {}

7/17/17

230 JSR-338 Maintenance Release

Oracle

Metamodel API Interfaces Java Persistence 2.2, Maintenance Release Metamodel API

5.1.8

BasicType Interface

5.1.9

package javax.persistence.metamodel;

/**
* Instances of the type BasicType represent basic types (including

* temporal and enumerated types).
*

* @param <X> The type of the represented basic type
*/
public interface BasicType<X> extends Type<X> {}

Bindable Interface

package javax.persistence.metamodel;

/**
* Instances of the type Bindable represent object or attribute types
* that can be bound into a Path.
*
* @param <T> The type of the represented object or attribute
*/
public interface Bindable<T> {

public static enum BindableType {
SINGULAR ATTRIBUTE, PLURAL ATTRIBUTE, ENTITY TYPE
}

/**
* Return the bindable type of the represented object.
* (@return bindable type
*/

BindableType getBindableType() ;

/xx
Return the Java type of the represented object.

If the bindable type of the object is PLURAL ATTRIBUTE,
the Java element type is returned. If the bindable type is
SINGULAR ATTRIBUTE or ENTITY TYPE, the Java type of the
represented entity or attribute is returned.

* @return Java type

*

/
Class<T> getBindableJavaType() ;

% X % % X%

JSR-338 Maintenance Release 231 7/17/17

Oracle

Metamodel API

Java Persistence 2.2, Maintenance Release Metamodel API Interfaces

5.1.10 Attribute Interface

package javax.persistence.metamodel;

* Represents an attribute of a Java type.

* @param <X> The represented type that contains the attribute
* @param <Y> The type of the represented attribute

public interface Attribute<X, Y> {

public static enum PersistentAttributeType {
MANY TO ONE, ONE TO ONE, BASIC, EMBEDDED,
MANY TO MANY, ONE TO MANY, ELEMENT COLLECTION
}

/**

* Return the name of the attribute.
* @return name

*/

String getName () ;

/**

* Return the persistent attribute type for the attribute.
* (@return persistent attribute type

*/

PersistentAttributeType getPersistentAttributeType ()

/**
* Return the managed type representing the type in which
* the attribute was declared.
* Q@return declaring type
*/
ManagedType<X> getDeclaringType () ;

/**
* Return the Java type of the represented attribute.
* (@return Java type
*/

Class<Y> getJavaType () ;

/**

* Return the java.lang.reflect.Member for the represented
* attribute.

* (@return corresponding java.lang.reflect.Member

*/

java.lang.reflect.Member getJavaMember () ;

/**

* Is the attribute an association.

* (@return boolean indicating whether the attribute corresponds
* to an association

*/

boolean isAssociation();

7/17/17

232 JSR-338 Maintenance Release

Oracle

Metamodel API Interfaces Java Persistence 2.2, Maintenance Release Metamodel API

/**

* Is the attribute collection-valued (represents a Collection,
* Set, List, or Map).

* (@return boolean indicating whether the attribute is

* collection-valued

*

/

boolean isCollection();

5.1.11 SingularAttribute Interface

package javax.persistence.metamodel;

/**
* Instances of the type SingularAttribute represents persistent
* single-valued properties or fields.
*
* @param <X> The type containing the represented attribute
* @param <T> The type of the represented attribute
*/
public interface SingularAttribute<X, T>
extends Attribute<X, T>, Bindable<T> {

/**
* Is the attribute an id attribute. This method will return

* true if the attribute is an attribute that corresponds to

* a simple id, an embedded id, or an attribute of an id class.
* (@return boolean indicating whether the attribute is an id

*

/

boolean isId();

/**

* 1Is the attribute a version attribute.

* (@return boolean indicating whether the attribute is
* a version attribute

*/

boolean isVersion();

/**

* Can the attribute be null.

* Q@return boolean indicating whether the attribute can be null
*/

boolean isOptional () ;

/**
* Return the type that represents the type of the attribute.
* @return type of attribute
*/

Type<T> getType();

JSR-338 Maintenance Release 233 7/17/17

Oracle

Metamodel API

Java Persistence 2.2, Maintenance Release Metamodel API Interfaces

5.1.12 PluralAttribute Interface

package javax.persistence.metamodel;

/**

*

X % X ot

*

*/

Instances of the type PluralAttribute represent
persistent collection-valued attributes.

@param <X> The type the represented collection belongs to
@param <C> The type of the represented collection
@param <E> The element type of the represented collection

public interface PluralAttribute<X, C, E>

extends Attribute<X, C>, Bindable<E> {

public static enum CollectionType {
COLLECTION, SET, LIST, MAP
}

/**
* Return the collection type.
* @return collection type
*/
CollectionType getCollectionType () ;

/**
* Return the type representing the element type of the
* collection.
* @return element type
*/
Type<E> getElementType ()

5.1.13 CollectionAttribute Interface

package javax.persistence.metamodel;

/**

*
*
*
*
*

*/

Instances of the type CollectionAttribute represent persistent
javax.util.Collection-valued attributes.

@param <X> The type the represented Collection belongs to
@param <E> The element type of the represented Collection

public interface CollectionAttribute<X, E>

extends PluralAttribute<X, java.util.Collection<E>, E> {}

7/17/17

234 JSR-338 Maintenance Release

Oracle

Metamodel API Interfaces Java Persistence 2.2, Maintenance Release Metamodel API

5.1.14

SetAttribute Interface

5.1.15

package javax.persistence.metamodel;

/**
* Instances of the type SetAttribute represent persistent
* java.util.Set-valued attributes.
*
* @param <X> The type the represented Set belongs to
* @param <E> The element type of the represented Set
*/
public interface SetAttribute<X, E>
extends PluralAttribute<X, java.util.Set<E>, E> {}

ListAttribute Interface

5.1.16

package Jjavax.persistence.metamodel;

/**
* Instances of the type ListAttribute represent persistent
* jJava.util.List-valued attributes.
*
* @param <X> The type the represented List belongs to
* (@param <E> The element type of the represented List
*/
public interface ListAttribute<X, E>
extends PluralAttribute<X, java.util.List<E>, E> {}

MapAttribute Interface

package javax.persistence.metamodel;

/**
* Instances of the type MapAttribute represent persistent
java.util.Map-valued attributes.

@param <X> The type the represented Map belongs to
@param <K> The type of the key of the represented Map
* @param <V> The type of the value of the represented Map
*/
public interface MapAttribute<X, K, V>
extends PluralAttribute<X, java.util.Map<K, V>, V> {

X % X ot

/**
* Return the Java type of the map key.
* @return Java key type
*/

Class<K> getKeyJavaType () ;

/**

* Return the type representing the key type of the map.
* @return type representing key type
*/

Type<K> getKeyType ()

JSR-338 Maintenance Release 2 3 5

7/17/17

Oracle

Metamodel API

Java Persistence 2.2, Maintenance Release Metamodel API Interfaces

5.1.17 StaticMetamodel Annotation

package javax.persistence.metamodel;

import Jjava.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import Jjava.lang.annotation.Target;

/**
* The StaticMetamodel annotation specifies that the class
* is a metamodel class that represents the entity, mapped
* superclass, or embeddable class designated by the wvalue
* element.
*/

@Target (ElementType.TYPE)

@Retention (RetentionPolicy.RUNTIME)

public @interface StaticMetamodel ({

/**
* Class being modeled by the annotated class.
*/

Class<?> value () ;

7/17/17

236 JSR-338 Maintenance Release

Oracle

Overview

Chapter 6

6.1

Java Persistence 2.2, Maintenance Release Criteria API

Criteria API

The Java Persistence Criteria API is used to define queries through the construction of object-based
query definition objects, rather than use of the string-based approach of the Java Persistence query lan-
guage described in Chapter 4.

This chapter provides the full definition of the Criteria API.

Overview

The Java Persistence Criteria API, like the Java Persistence query language is based on the abstract per-
sistence schema of entities, their embedded objects, and their relationships as its data model. This
abstract persistence schema is materialized in the form of metamodel objects over which the Criteria
API operates. The semantics of criteria queries are designed to reflect those of Java Persistence query
language queries.

The syntax of the Criteria API is designed to allow the construction of an object-based query “graph”,
whose nodes correspond to the semantic query elements.

JSR-338 Maintenance Release 237 7/17/17

Oracle

Criteria API

6.2

Java Persistence 2.2, Maintenance Release Metamodel

Java language variables can be used to reference individual nodes in a criteria query object as it is con-
structed and/or modified. Such variables, when used to refer to the entities and embeddable types that
constitute the query domain, play a role analogous to that of the identification variables of the Java Per-
sistence query language.

These concepts are further described in the sections that follow. The metamodel on which criteria que-
ries are based is presented in Chapter 5. The static metamodel classes that can be used in constructing
strongly-typed criteria queries are described in section 6.2. The javax.persistence.criteria
interfaces are presented in Section 6.3. Sections 6.4 through 6.8 describe the construction and modifica-
tion of criteria query objects. Additional requirements on the persistence provider are described in sec-
tion 6.9.

Metamodel

6.2.1

Java Persistence criteria queries are based on a metamodel of the managed classes of the persistence
unit. Static metamodel classes corresponding to the managed classes of the persistence unit can be gen-
erated by means of an annotation processor or can be created by the application developer, or the meta-
model can be accessed dynamically by use of the
javax.persistence.metamodel .Metamodel interface. The getMetamodel method of the
EntityManagerFactory or EntityManager interface can be used to obtain a Metamodel
mstance.

Static Metamodel Classes

6.2.1.1

In the typical case, an annotation processor is expected to be used to produce static metamodel classes
corresponding to the entities, mapped superclasses, and embeddable classes in the persistence unit. A
static metamodel class models the persistent state and relationships of the corresponding managed class.
For portability, an annotation processor should generate a canonical metamodel as defined below.

Canonical Metamodel

This specification defines as follows a canonical metamodel and the structure of canonical metamodel
classes.

For every managed class in the persistence unit, a corresponding metamodel class is produced as fol-
lows:

¢ For each managed class X in package p, a metamodel class X _in package p is created.[”?]

¢ The name of the metamodel class is derived from the name of the managed class by appending
" " to the name of the managed class.

e The metamodel class X must be annotated with the javax.persistence.Static-
Metamodel annotation!’%),

[75] We expect that the option of different packages will be provided in a future release of this specification.

7/17/17

238 JSR-338 Maintenance Release

Oracle

Metamodel Java Persistence 2.2, Maintenance Release Criteria API

e If class X extends another class S, where S is the most derived managed class (i.e., entity or
mapped superclass) extended by X, then class X must extend class S_, where S__is the meta-
model class created for S.

¢ For every persistent non-collection-valued attribute y declared by class X, where the type of y
is Y, the metamodel class must contain a declaration as follows:

public static volatile SingularAttribute<X, Y> y;

e For every persistent collection-valued attribute z declared by class X, where the element type
of z is 7, the metamodel class must contain a declaration as follows:

¢ if the collection type of z is java.util.Collection, then
public static volatile CollectionAttribute<X, Z> z;

¢ if the collection type of z is java.util. Set, then
public static volatile SetAttribute<X, Z> z;

e if'the collection type of z is java.util.List, then
public static volatile ListAttribute<X, Z> z;

e if'the collection type of z is java.util.Map, then

public static volatile MapAttribute<X, K, Z> z;
where K is the type of the key of the map in class X

Import statements must be included for the needed javax.persistence.metamodel types as
appropriate (e.g., javax.persistence.metamodel.SingularAttribute, javax.per-
sistence.metamodel.CollectionAttribute, javax.persistence.meta-
model.SetAttribute, javax.persistence.metamodel.ListAttribute,
javax.persistence.metamodel .MapAttribute)and all classes X, Y, Z, and K.

Implementations of this specification are not required to support the use of non-canonical

metamodel classes. Applications that use non-canonical metamodel classes will not be porta-
ble.

[76] If the class was generated, the javax.annotation.Generated annotation should be used to annotate the class. The use of
any annotations other than StaticMetamodel and Generated on static metamodel classes is undefined.

JSR-338 Maintenance Release 239 7/17/17

Oracle

Criteria API

Java Persistence 2.2, Maintenance Release Metamodel

6.2.1.2 Example

6.2.2

Assume the Order entity below.

package com.example;

import java.util.Set;
import Jjava.math.BigDecimal;

@Entity public class Order {
@Id Integer orderId;
@ManyToOne Customer customer;
@OneToMany Set<Item> lineItems;
Address shippingAddress;
BigDecimal totalCost;

}

The corresponding canonical metamodel class, Order , is as follows:

package com.example;
import java.math.BigDecimal;

import javax.persistence.metamodel.SingularAttribute;
import Jjavax.persistence.metamodel.SetAttribute;
import Jjavax.persistence.metamodel.StaticMetamodel;

@StaticMetamodel (Order.class)
public class Order_ {

public static volatile SingularAttribute<Order, Integer> orderId;

public static volatile SingularAttribute<Order, Customer> cus-
tomer;

public static volatile SetAttribute<Order, Item> lineltems;

public static volatile SingularAttribute<Order, Address>
shippingAddress;

public static volatile SingularAttribute<Order, BigDecimal>
totalCost;
}

Bootstrapping

When the entity manager factory for a persistence unit is created, it is the responsibility of the persis-
tence provider to initialize the state of the metamodel classes of the persistence unit. Any generated
metamodel classes must be accessible on the classpath.

Persistence providers must support the use of canonical metamodel classes. Persistence providers may,
but are not required to, support the use of non-canonical metamodel classes.

7/17/17

240 JSR-338 Maintenance Release

Oracle

Criteria API Interfaces

Java Persistence 2.2, Maintenance Release Criteria API

6.3 Criteria API Interfaces

6.3.1 CriteriaBuilder Interface

package javax.persistence.criteria;

import java.math.BigDecimal;
import java.math.BigInteger;
import java.util.Collection;
import Jjava.util.Map;

import java.util.Set;

import javax.persistence.Tuple;

/

* % X ok %

*

*/

Used to construct criteria queries, compound selections,
expressions, predicates, orderings.

Note that Predicate is used instead of Expression<Boolean>
in this API in order to work around the fact that Java
generics are not compatible with varags.

public interface CriteriaBuilder ({

/**
* Create a CriteriaQuery object.
* (@return criteria query object
*/

CriteriaQuery<Object> createQuery();

/**

* Create a CriteriaQuery object with the specified result
* type.

* (@param resultClass type of the query result

* (@return criteria query object

*/

<T> CriteriaQuery<T> createQuery (Class<T> resultClass);

/**
* Create a CriteriaQuery object that returns a tuple of
* objects as its result.

* (@return criteria query object
*/
CriteriaQuery<Tuple> createTupleQuery () ;

// methods to construct queries for bulk updates and deletes:

/**
* Create a query object to perform a bulk update operation.
* (@param targetEntity target type for update operation
* (@return the query object
*/
<T> CriteriaUpdate<T> createCriteriaUpdate (
Class<T> targetEntity);

JSR-338 Maintenance Release 241 7/17/17

Oracle

Criteria API

Java Persistence 2.2, Maintenance Release Criteria API Interfaces

/**
* Create a query object to perform a bulk delete operation.
* (@param targetEntity target type for delete operation
* (@return the query object
*/
<T> CriteriaDelete<T> createCriteriaDelete (
Class<T> targetEntity);

// selection construction methods:

/**

* Create a selection item corresponding to a constructor.
This method is used to specify a constructor that will be
applied to the results of the query execution. If the
constructor is for an entity class, the resulting entities
will be in the new state after the query is executed.
@param resultClass class whose instance is to be constructed
@param selections arguments to the constructor
@return compound selection item
@throws IllegalArgumentException if an argument is a

tuple- or array-valued selection item

X% X b o X X o

*

*/
<Y> CompoundSelection<Y> construct (Class<Y> resultClass,
Selection<?>... selections);

*

Create a tuple-valued selection item.

@param selections selection items

@return tuple-valued compound selection

@throws IllegalArgumentException if an argument is a
* tuple- or array-valued selection item

*

/

CompoundSelection<Tuple> tuple (Selection<?>... selections);

/**
* Create an array-valued selection item.
* (@param selections selection items
* @return array-valued compound selection
* @throws IllegalArgumentException if an argument is a
* tuple- or array-valued selection item
*
/

CompoundSelection<Object[]> array(Selection<?>... selections);

/

X% ok o %

//ordering:

/**

* Create an ordering by the ascending value of the expression.
* (@param x expression used to define the ordering

* @return ascending ordering corresponding to the expression
*/

Order asc (Expression<?> x);

7/17/17

242 JSR-338 Maintenance Release

Oracle

Criteria API Interfaces

Java Persistence 2.2, Maintenance Release Criteria API

/**

* Create an ordering by the descending value of the expression.
* (@param x expression used to define the ordering

* @return descending ordering corresponding to the expression
*/

Order desc (Expression<?> x);

//aggregate functions:

/**

* Create an aggregate expression applying the avg operation.

* @param x expression representing input value to avg operation
* @return avg expression

*/

<N extends Number> Expression<Double> avg (Expression<N> x);

/**

* Create an aggregate expression applying the sum operation.

* @param x expression representing input value to sum operation
* @return sum expression

*/

<N extends Number> Expression<N> sum(Expression<N> x) ;

/**
* Create an aggregate expression applying the sum operation to
* an Integer-valued expression, returning a Long result.
* (@param x expression representing input value to sum operation
* @return sum expression
*
/

Expression<Long> sumAsLong (Expression<Integer> x);

/**

* Create an aggregate expression applying the sum operation to a
* Float-valued expression, returning a Double result.

* @param x expression representing input value to sum operation
* @return sum expression

*

/

Expression<Double> sumAsDouble (Expression<Float> x);

/**
* Create an aggregate expression applying the numerical max
* operation.
* (@param x expression representing input value to max operation
* (@dreturn max expression
*
/

<N extends Number> Expression<N> max (Expression<N> x);

/**
* Create an aggregate expression applying the numerical min
* operation.
* @param x expression representing input value to min operation
* @return min expression
*
/

<N extends Number> Expression<N> min (Expression<N> x);

JSR-338 Maintenance Release 243 7/17/17

Oracle

Criteria API

Java Persistence 2.2, Maintenance Release Criteria API Interfaces

/**
* Create an aggregate expression for finding the greatest of
* the values (strings, dates, etc).
* (@param x expression representing input value to greatest
* operation
* @return greatest expression
*
/

<X extends Comparable<? super X>> Expression<X> greatest
Expression<X> x);

/**
* Create an aggregate expression for finding the least of
* the values (strings, dates, etc).
* @param x expression representing input value to least
* operation
* @return least expression
*
/

<X extends Comparable<? super X>> Expression<X> least (
Expression<X> x);

/**

* Create an aggregate expression applying the count operation.
* @param x expression representing input value to count

* operation

* @return count expression

*

/

Expression<Long> count (Expression<?> x);

/

*

Create an aggregate expression applying the count distinct
operation.
@param x expression representing input value to
count distinct operation
@return count distinct expression

X % X o %

*

*/

Expression<Long> countDistinct (Expression<?> x);

//subqueries:

/**

* Create a predicate testing the existence of a subquery result.
* @param subquery subquery whose result is to be tested

* (@dreturn exists predicate

*/

Predicate exists (Subquery<?> subquery);

/**
* Create an all expression over the subquery results.
* @param subquery
* @return all expression
*/
<Y> Expression<¥> all (Subquery<Y> subquery) ;

7/17/17

244 JSR-338 Maintenance Release

Oracle

Criteria API Interfaces

Java Persistence 2.2, Maintenance Release Criteria API

/**

* Create a some expression over the subquery results.
* This expression is equivalent to an any expression.
* @param subquery

* @return some expression

*

/

<Y> Expression<Y¥> some (Subquery<¥Y> subquery) ;

/**
* Create an any expression over the subquery results.
* This expression is equivalent to a some expression.
* @param subquery
* @return any expression
*/

<Y> Expression<¥> any (Subquery<Y¥> subquery) ;

//boolean functions:

/**
* Create a conjunction of the given boolean expressions.
* @param x boolean expression
* @param y boolean expression
* @return and predicate
*
/

Predicate and(Expression<Boolean> x, Expression<Boolean> y);

/**

* Create a conjunction of the given restriction predicates.
* A conjunction of zero predicates is true.

* @param restrictions zero or more restriction predicates
* @return and predicate

*

/

Predicate and(Predicate... restrictions);

/**
* Create a disjunction of the given boolean expressions.
* (@param x boolean expression
* @param y boolean expression
* (@return or predicate
*
/

Predicate or (Expression<Boolean> x, Expression<Boolean> y);

/**

* Create a disjunction of the given restriction predicates.
* A disjunction of zero predicates is false.

* (@param restrictions zero or more restriction predicates
* @return or predicate

*

/

Predicate or (Predicate... restrictions);

/**

* Create a negation of the given restriction.
* (@param restriction restriction expression
* @return not predicate

*/

Predicate not (Expression<Boolean> restriction);

JSR-338 Maintenance Release 245 7/17/17

Oracle

Criteria API

Java Persistence 2.2, Maintenance Release Criteria API Interfaces

/**

* Create a conjunction (with zero conjuncts).
* A conjunction with zero conjuncts is true.
* @return and predicate

*/

Predicate conjunction();

/**

* Create a disjunction (with zero disjuncts).
* A disjunction with zero disjuncts is false.
* @return or predicate

*/

Predicate disjunction();

//turn Expression<Boolean> into a Predicate
//useful for use with varargs methods

/**

* Create a predicate testing for a true value.
* (@param x expression to be tested

* @return predicate

*/

Predicate isTrue (Expression<Boolean> x);

/**

* Create a predicate testing for a false value.
* (@param x expression to be tested

* @return predicate

*/

Predicate isFalse (Expression<Boolean> x);

//null tests:

/**

* Create a predicate to test whether the expression is null.
* (@param x expression

* @return is-null predicate

*/

Predicate 1isNull (Expression<?> x);

/**

* Create a predicate to test whether the expression is not null.
* @param x expression

* @return is-not-null predicate

*/

Predicate isNotNull (Expression<?> Xx);

//equality:
/**

* Create a predicate for testing the arguments for equality.
* @param x expression
* (@param y expression
* (@return equality predicate
*
/

Predicate equal (Expression<?> x, Expression<?> y);

7/17/17

246 JSR-338 Maintenance Release

Oracle

Criteria API Interfaces Java Persistence 2.2, Maintenance Release Criteria API

/**
* Create a predicate for testing the arguments for equality.
* @param x expression
* @param y object
* @return equality predicate
*
/

Predicate equal (Expression<?> x, Object y);

/**
* Create a predicate for testing the arguments for inequality.
* @param x expression
* @param y expression
* @return inequality predicate
*
/

Predicate notEqual (Expression<?> x, Expression<?> y);

/**
* Create a predicate for testing the arguments for inequality.
* (@param x expression
* @param y object
* @return inequality predicate
*/
Predicate notEqual (Expression<?> x, Object vy);

//comparisons for generic (non-numeric) operands:

/**
* Create a predicate for testing whether the first argument is
* greater than the second.
* (@param x expression
* @param y expression
* @return greater-than predicate
*
/
<Y extends Comparable<? super Y>> Predicate greaterThan (
Expression<? extends Y> x, Expression<? extends Y> vy);

*

/
Create a predicate for testing whether the first argument is
greater than the second.
@param x expression
@param y value

* @return greater-than predicate

*

/
<Y extends Comparable<? super Y>> Predicate greaterThan (

Expression<? extends Y¥> x, Y y);

L

/**

* Create a predicate for testing whether the first argument is
* greater than or equal to the second.

* @param x expression

*

@param y expression

* @return greater-than-or-equal predicate

*/
<Y extends Comparable<? super Y>> Predicate greaterThanOrEqualTo (
Expression<? extends Y> x, Expression<? extends Y> y);

JSR-338 Maintenance Release 247 7/17/17

Oracle

Criteria API

Java Persistence 2.2, Maintenance Release Criteria API Interfaces

/**

* Create a predicate for testing whether the first argument is
* greater than or equal to the second.

* @param x expression

*

@param y value

* @return greater-than-or-equal predicate

*/
<Y extends Comparable<? super Y>> Predicate greaterThanOrEqualTo (
Expression<? extends Y> x, Y y);

/**

* Create a predicate for testing whether the first argument is
* less than the second.

* (@param x expression

*

@param y expression

* @return less-than predicate

*/
<Y extends Comparable<? super Y>> Predicate lessThan (
Expression<? extends Y> x, Expression<? extends Y> vy);

/**

* Create a predicate for testing whether the first argument is
* less than the second.

* @param x expression

* @param y value

* (@return less-than predicate
*/
<Y extends Comparable<? super Y>> Predicate lessThan (
Expression<? extends Y> x, Y vy);

*

Create a predicate for testing whether the first argument is
less than or equal to the second.

@param x expression

@param y expression

@return less-than-or-equal predicate

* % X ok o

*

*/
<Y extends Comparable<? super Y>> Predicate lessThanOrEqualTo (
Expression<? extends Y> x, Expression<? extends Y> vy);

*

Create a predicate for testing whether the first argument is
less than or equal to the second.

@param x expression

@param y value

@return less-than-or-equal predicate

bl T S S

*

*/
<Y extends Comparable<? super Y>> Predicate lessThanOrEqualTo (
Expression<? extends Y> x, Y y);

7/17/17

248 JSR-338 Maintenance Release

Oracle

Criteria API Interfaces Java Persistence 2.2, Maintenance Release Criteria API
/ * *
* Create a predicate for testing whether the first argument is
* between the second and third arguments in wvalue.
* @param v expression
* (@param x expression
*

@param y expression
* @return between predicate
*
/
<Y extends Comparable<? super Y>> Predicate between (
Expression<? extends Y> v,
Expression<? extends ¥Y> x,
Expression<? extends Y> vy);

/**

* Create a predicate for testing whether the first argument is
* between the second and third arguments in value.

* (@param v expression

* @param x value

*

@param y value

* @return between predicate

*/
<Y extends Comparable<? super Y>> Predicate between (
Expression<? extends Y¥> v, Y x, Y y);

//comparisons for numeric operands:

/**
* Create a predicate for testing whether the first argument is
* greater than the second.
* @param x expression
* (@param y expression
* @return greater-than predicate
*
/
Predicate gt (Expression<? extends Number> x,
Expression<? extends Number> y);

Create a predicate for testing whether the first argument is
greater than the second.

@param x expression

@param y value

* @return greater-than predicate

X % X o %

*/
Predicate gt (Expression<? extends Number> x, Number y);
/**
* Create a predicate for testing whether the first argument is
* greater than or equal to the second.
* (@param x expression
*

@param y expression

* @return greater-than-or-equal predicate

*/
Predicate ge (Expression<? extends Number> x,
Expression<? extends Number> y);

JSR-338 Maintenance Release 249 7/17/17

Oracle

Criteria API

Java Persistence 2.2, Maintenance Release Criteria API Interfaces

/**

* Create a predicate for testing whether the first argument is
* greater than or equal to the second.

* @param x expression

*

@param y value
* @return greater-than-or-equal predicate
*/

Predicate ge (Expression<? extends Number> x, Number y);

/xx
Create a predicate for testing whether the first argument is
less than the second.

@param x expression
@param y expression
* @return less-than predicate
*
/
Predicate 1t (Expression<? extends Number> x,
Expression<? extends Number> y);

* % X ok o

/**

* Create a predicate for testing whether the first argument is
* less than the second.

* (@param x expression

*

@param y value
* @return less-than predicate
*/

Predicate 1t (Expression<? extends Number> x, Number y);

/ *

Create a predicate for testing whether the first argument is
less than or equal to the second.

@param x expression

@param y expression

* @return less-than-or-equal predicate

*

/
Predicate le (Expression<? extends Number> x,

Expression<? extends Number> y);

X % X o %

/**

* Create a predicate for testing whether the first argument is
* less than or equal to the second.

* @param x expression

*

@param y value
* @return less-than-or-equal predicate
*/

Predicate le (Expression<? extends Number> x, Number y);

//numerical operations:

/**
* Create an expression that returns the arithmetic negation
* of its argument.
* @param x expression
* @return arithmetic negation
*
/

<N extends Number> Expression<N> neg (Expression<N> x);

7/17/17

250 JSR-338 Maintenance Release

Oracle

Criteria API Interfaces Java Persistence 2.2, Maintenance Release Criteria API

/**
* Create an expression that returns the absolute value
* of its argument.
* @param x expression
* @return absolute value
*
/

<N extends Number> Expression<N> abs (Expression<N> x);

/o
Create an expression that returns the sum

of its arguments.

@param x expression

@param y expression

* @return sum

*/
<N extends Number> Expression<N> sum(Expression<? extends N> x,

Expression<? extends N> vy);

L

Create an expression that returns the sum
of its arguments.
@param x expression
@param y value
* @return sum
*/
<N extends Number> Expression<N> sum(Expression<? extends N> x,
N y);

* % X ok ot

*

Create an expression that returns the sum
of its arguments.
@param x value
@param y expression
* @return sum
*/
<N extends Number> Expression<N> sum(N x,
Expression<? extends N> vy);

/

X % X o %

*

Create an expression that returns the product
of its arguments.
@param x expression
@param y expression
* @return product
*/
<N extends Number> Expression<N> prod (Expression<? extends N> x,
Expression<? extends N> vy);

/

L

Create an expression that returns the product
of its arguments.
@param x expression
@param y value
* @return product
*
/
<N extends Number> Expression<N> prod (Expression<? extends N> x,
N y);

* % X ok o

JSR-338 Maintenance Release 251 7/17/17

Oracle

Criteria API Java Persistence 2.2, Maintenance Release Criteria API Interfaces
/ * %
* Create an expression that returns the product
* of its arguments.
* @param x value
*

@param y expression
* @return product
*/
<N extends Number> Expression<N> prod (N x,
Expression<? extends N> vy);

*

/
Create an expression that returns the difference
between its arguments.
@param x expression
@param y expression
* @return difference
*
/
<N extends Number> Expression<N> diff (Expression<? extends N> x,
Expression<? extends N> vy);

L

*

/
Create an expression that returns the difference
between its arguments.

@param x expression

@param y value

@return difference

* % X ok ot

*

*/
<N extends Number> Expression<N> diff (Expression<? extends N> x,
N y);
/*
Create an expression that returns the difference
between its arguments.
@param x value
@param y expression
* @return difference
*/
<N extends Number> Expression<N> diff (N x,
Expression<? extends N> y);

X % X o %

*

/
Create an expression that returns the quotient
of its arguments.
@param x expression
@param y expression
* @return quotient
*
/
Expression<Number> quot (Expression<? extends Number> x,
Expression<? extends Number> vy);

L

*

Create an expression that returns the quotient
of its arguments.

@param x expression

@param y value

@return quotient

X% ok b X X X

~

Expression<Number> quot (Expression<? extends Number> x, Number y);

71717 252 JSR-338 Maintenance Release

Oracle

Criteria API Interfaces Java Persistence 2.2, Maintenance Release Criteria API

Create an expression that returns the quotient
of its arguments.

@param x value

@param y expression

@return quotient

/

Expression<Number> quot (Number x, Expression<? extends Number> y);

/

% X ok ok X X

*

Create an expression that returns the modulus
of its arguments.
@param x expression
@param y expression

* @return modulus

*/
Expression<Integer> mod (Expression<Integer> x,
Expression<Integer> vy);

X % X o %

*

/
Create an expression that returns the modulus
of its arguments.
@param x expression
@param y value
* @return modulus
*
/

Expression<Integer> mod (Expression<Integer> x, Integer vy);

L

/**
* Create an expression that returns the modulus
* of its arguments.

* @param x value

* @param y expression

* @return modulus

*

/

Expression<Integer> mod(Integer x, Expression<Integer> vy);

/**
* Create an expression that returns the square root
* of its argument.
* @param x expression
* @return square root
*
/

Expression<Double> sqgrt (Expression<? extends Number> x);

//typecasts:

/**

* Typecast. Returns same expression object.
* @param number numeric expression

* @return Expression<Long>

*/

Expression<Long> toLong (Expression<? extends Number> number) ;

JSR-338 Maintenance Release 253 7/17/17

Oracle

Criteria API

Java Persistence 2.2, Maintenance Release Criteria API Interfaces

/**
* Typecast. Returns same expression object.
* @param number numeric expression
* @return Expression<Integer>
*/
Expression<Integer> tolInteger (
Expression<? extends Number> number) ;

/**

* Typecast. Returns same expression object.
* @param number numeric expression

* @return Expression<Float>

*/

Expression<Float> toFloat (Expression<? extends Number> number);

/**

* Typecast. Returns same expression object.
* @param number numeric expression

* @return Expression<Double>

*/

Expression<Double> toDouble (Expression<? extends Number> number) ;

/**
* Typecast. Returns same expression object.
* @param number numeric expression
* @return Expression<BigDecimal>
*/
Expression<BigDecimal> toBigDecimal (
Expression<? extends Number> number) ;

/**
* Typecast. Returns same expression object.
* @param number numeric expression
* @return Expression<BigInteger>
*/
Expression<BigInteger> toBiglInteger (
Expression<? extends Number> number) ;

/**

* Typecast. Returns same expression object.
* @param character expression

* @return Expression<String>

*/

Expression<String> toString (Expression<Character> character);

//literals:

/**

* Create an expression for a literal.

* @param value value represented by the expression
* @return expression literal

* @throws IllegalArgumentException if value is null
*

/

<T> Expression<T> literal (T value);

7/17/17

254 JSR-338 Maintenance Release

Oracle

Criteria API Interfaces

Java Persistence 2.2, Maintenance Release Criteria API

/**

* Create an expression for a null literal with the given type.
* @param resultClass type of the null literal

* @return null expression literal

*/

<T> Expression<T> nullLiteral (Class<T> resultClass);

//parameters:

/**

* Create a parameter expression.

* @param paramClass parameter class
* @return parameter expression

*/

<T> ParameterExpression<T> parameter (Class<T> paramClass);

/**
* Create a parameter expression with the given name.
* @param paramClass parameter class
* @param name name that can be used to refer to
* the parameter
* @return parameter expression
*
/

<T> ParameterExpression<T> parameter (Class<T> paramClass,
String name) ;

//collection operations:

/**
* Create a predicate that tests whether a collection is empty.
* (@param collection expression
* (@return is-empty predicate
*/
<C extends Collection<?>> Predicate isEmpty (
Expression<C> collection);

/**
* Create a predicate that tests whether a collection is
* not empty.

* (@param collection expression
* Q@return is-not-empty predicate
*
/
<C extends Collection<?>> Predicate isNotEmpty (
Expression<C> collection);

/**
* Create an expression that tests the size of a collection.
* @param collection expression
* @return size expression
*/
<C extends Collection<?>> Expression<Integer> size(
Expression<C> collection);

JSR-338 Maintenance Release 255 7/17/17

Oracle

Criteria API

/**

Java Persistence 2.2, Maintenance Release Criteria API Interfaces

* Create an expression that tests the size of a collection.
* @param collection collection
* (@dreturn size expression

*/

<C extends Collection<?>> Expression<Integer> size(C collection);

*

~
X% > b X X X ot

A
[al
AN

*

~
X% X ok % X X ot

A
=l
AN

*

~

% X ok b X X X

A
=1
AN

*

~
X% >k b X X X o

A
=1
AN

Create a predicate that tests whether an element is

a member of a collection.

If the collection is empty, the predicate will be false.
@param elem element expression

@param collection expression

@return is-member predicate

C extends Collection<E>> Predicate isMember (
Expression<E> elem, Expression<C> collection);

Create a predicate that tests whether an element is

a member of a collection.

If the collection is empty, the predicate will be false.
@param elem element

@param collection expression

@return is-member predicate

C extends Collection<E>> Predicate isMember (
E elem, Expression<C> collection);

Create a predicate that tests whether an element is
not a member of a collection.

If the collection is empty, the predicate will be true.
@param elem element expression

@param collection expression

@return is-not-member predicate

C extends Collection<E>> Predicate isNotMember (
Expression<E> elem, Expression<C> collection);

Create a predicate that tests whether an element is
not a member of a collection.

If the collection is empty, the predicate will be true.
@param elem element

@param collection expression

@return is-not-member predicate

C extends Collection<E>> Predicate isNotMember (
E elem, Expression<C> collection);

7/17/17

256 JSR-338 Maintenance Release

Oracle

Criteria API Interfaces

Java Persistence 2.2, Maintenance Release Criteria API

//get the values and keys collections of the Map, which may then
//be passed to size(), isMember (), isEmpty(), etc

/**
* Create an expression that returns the values of a map.
* @param map map
* @return collection expression
*/
<V, M extends Map<?, V>> Expression<Collection<V>> wvalues (M map);

/**
* Create an expression that returns the keys of a map.
* @param map map
* @return set expression
*/
<K, M extends Map<K, ?>> Expression<Set<K>> keys (M map) ;

//string functions:

/**
* Create a predicate for testing whether the expression
* satisfies the given pattern.
* (@param x string expression
* (@param pattern string expression
* (@return like predicate
*
/

Predicate like (Expression<String> x, Expression<String> pattern);

/**
* Create a predicate for testing whether the expression
* satisfies the given pattern.
* @param x string expression
* (@param pattern string
* @return like predicate
*
/

Predicate like (Expression<String> x, String pattern);

/**
* Create a predicate for testing whether the expression
satisfies the given pattern.
@param x string expression
@param pattern string expression
@param escapeChar escape character expression
* @return like predicate
*
/
Predicate like (Expression<String> x,
Expression<String> pattern,
Expression<Character> escapeChar);

* % X X

JSR-338 Maintenance Release 257 7/17/17

Oracle

Criteria API

Java Persistence 2.2, Maintenance Release Criteria API Interfaces

Create a predicate for testing whether the expression
satisfies the given pattern.
@param x string expression
@param pattern string expression
@param escapeChar escape character

* @return like predicate

*

/
Predicate like (Expression<String> x,
Expression<String> pattern,
char escapeChar);

X % X ok % X%

Create a predicate for testing whether the expression
satisfies the given pattern.
@param x string expression
@param pattern string
@param escapeChar escape character expression
* @return like predicate
*
/
Predicate like (Expression<String> x,
String pattern,
Expression<Character> escapeChar);

X % X o % %

Create a predicate for testing whether the expression
satisfies the given pattern.
@param x string expression
@param pattern string
@param escapeChar escape character
* @return like predicate
*
/
Predicate like (Expression<String> x,
String pattern,
char escapeChar);

X % X o X %

*

/
Create a predicate for testing whether the expression
does not satisfy the given pattern.
@param x string expression
@param pattern string expression

* @return not-like predicate

*

/
Predicate notLike (Expression<String> x,

Expression<String> pattern);

* % X ok ot

*

/
Create a predicate for testing whether the expression
does not satisfy the given pattern.
@param x string expression
@param pattern string
* (@dreturn not-like predicate
*
/

Predicate notLike (Expression<String> x, String pattern);

L

7/17/17

258 JSR-338 Maintenance Release

Oracle

Criteria API Interfaces Java Persistence 2.2, Maintenance Release Criteria API

Create a predicate for testing whether the expression
does not satisfy the given pattern.
@param x string expression
@param pattern string expression
@param escapeChar escape character expression

* @return not-like predicate

*

/
Predicate notLike (Expression<String> x,
Expression<String> pattern,
Expression<Character> escapeChar);

X % X ok % X%

Create a predicate for testing whether the expression
does not satisfy the given pattern.
@param x string expression
@param pattern string expression
@param escapeChar escape character

* @return not-like predicate

*

/
Predicate notLike (Expression<String> x,
Expression<String> pattern,
char escapeChar);

X % X ok % %

Create a predicate for testing whether the expression
does not satisfy the given pattern.
@param x string expression
@param pattern string
@param escapeChar escape character expression
* @return not-like predicate
*
/
Predicate notLike (Expression<String> x,
String pattern,
Expression<Character> escapeChar);

X% X o % %

* Create a predicate for testing whether the expression
* does not satisfy the given pattern.
* @param x string expression
* @param pattern string

* @param escapeChar escape character

* @return not-like predicate

Predicate notLike (Expression<String> x,
String pattern,
char escapeChar);

/**
* Create an expression for string concatenation.
* (@param x string expression
* (@param y string expression
* Q@return expression corresponding to concatenation
*
/
Expression<String> concat (Expression<String> x,
Expression<String> vy);

JSR-338 Maintenance Release 259 7/17/17

Oracle

Criteria API Java Persistence 2.2, Maintenance Release Criteria API Interfaces
/ * %
* Create an expression for string concatenation.
* (@param x string expression
* (@param y string
* Q@return expression corresponding to concatenation
*/
Expression<String> concat (Expression<String> x, String vy);
/ * *
* Create an expression for string concatenation.
* (@param x string
* (@param y string expression
* (@return expression corresponding to concatenation
*/
Expression<String> concat (String x, Expression<String> y);
/ * %
* Create an expression for substring extraction.
* Extracts a substring starting at the specified position
* through to end of the string.
* First position is 1.
* (@param x string expression
* (@param from start position expression
* (@return expression corresponding to substring extraction
*/
Expression<String> substring (Expression<String> x,
Expression<Integer> from);
/ * %
* Create an expression for substring extraction.
* Extracts a substring starting at the specified position
* through to end of the string.
* First position is 1.
* (@param x string expression
* (@param from start position
* (@return expression corresponding to substring extraction
*/
Expression<String> substring (Expression<String> x, int from);
/ * *
* Create an expression for substring extraction.
* Extracts a substring of given length starting at the
* specified position.
* First position is 1.
* (@param x string expression
* (@param from start position expression
* (@param len length expression
* (@return expression corresponding to substring extraction
*/
Expression<String> substring(Expression<String> x,
Expression<Integer> from,
Expression<Integer> len);
71717 260 JSR-338 Maintenance Release

Oracle

Criteria API Interfaces Java Persistence 2.2, Maintenance Release Criteria API

*

Create an expression for substring extraction.

Extracts a substring of given length starting at the
specified position.

First position is 1.

@param x string expression

@param from start position

@param len length

@return expression corresponding to substring extraction

X% X ok % X X ot

*

*/
Expression<String> substring (Expression<String> x,
int from,
int len);

public static enum Trimspec {
/**
* Trim from leading end.
*/
LEADING,

/**

* Trim from trailing end.
*/

TRATILING,

/**
* Trim from both ends.
*/
BOTH
}

/**
* Create expression to trim blanks from both ends of
* a string.
* @param x expression for string to trim
* @return trim expression
*
/

Expression<String> trim (Expression<String> x);

/**
* Create expression to trim blanks from a string.
* @param ts trim specification
* @param x expression for string to trim
* @return trim expression
*
/

Expression<String> trim(Trimspec ts, Expression<String> x);

/**
* Create expression to trim character from both ends of
* a string.
* @param t expression for character to be trimmed
* @param x expression for string to trim
* @dreturn trim expression
*
/
Expression<String> trim(Expression<Character> t,
Expression<String> x);

JSR-338 Maintenance Release 261 7/17/17

Oracle

Criteria API

Java Persistence 2.2, Maintenance Release Criteria API Interfaces

/**

* Create expression to trim character from a string.
* @param ts trim specification

* @param t expression for character to be trimmed
*

@param x expression for string to trim

* @return trim expression

*/
Expression<String> trim(Trimspec ts,
Expression<Character> t,
Expression<String> x);

/**
* Create expression to trim character from both ends of
* a string.
* @param t character to be trimmed
* @param x expression for string to trim
* @return trim expression
*/
Expression<String> trim(char t, Expression<String> x);
/**
* Create expression to trim character from a string.
* @param ts trim specification
* @param t character to be trimmed
* @param x expression for string to trim
* @return trim expression
*/
Expression<String> trim(Trimspec ts,
char t,
Expression<String> x);
/**

* Create expression for converting a string to lowercase.
* @param x string expression

* @return expression to convert to lowercase

*/

Expression<String> lower (Expression<String> x);

/**

* Create expression for converting a string to uppercase.
* @param x string expression

* @return expression to convert to uppercase

*/

Expression<String> upper (Expression<String> x);

/**

* Create expression to return length of a string.
* @param x string expression

* @return length expression

*/

Expression<Integer> length (Expression<String> x);

7/17/17

262 JSR-338 Maintenance Release

Oracle

Criteria API Interfaces Java Persistence 2.2, Maintenance Release Criteria API
/ * *
* Create expression to locate the position of one string
* within another, returning position of first character
* if found.
* The first position in a string is denoted by 1. If the
* string to be located is not found, 0 is returned.
* (@param x expression for string to be searched
*

@param pattern expression for string to be located
@return expression corresponding to position

*

*/
Expression<Integer> locate (Expression<String> x,
Expression<String> pattern);

/**
* Create expression to locate the position of one string
* within another, returning position of first character
* if found.
* The first position in a string is denoted by 1. If the
* string to be located is not found, 0 is returned.
* (@param x expression for string to be searched
* @param pattern string to be located
* @return expression corresponding to position
*
/
Expression<Integer> locate (Expression<String> x, String pattern);
/**
* Create expression to locate the position of one string
* within another, returning position of first character
* if found.
* The first position in a string is denoted by 1. If the
* string to be located is not found, 0 is returned.
* (@param x expression for string to be searched
* (@param pattern expression for string to be located
* @param from expression for position at which to start search
* @return expression corresponding to position
*
/

Expression<Integer> locate (Expression<String> x,
Expression<String> pattern,
Expression<Integer> from) ;

*

Create expression to locate the position of one string
within another, returning position of first character
if found.

The first position in a string is denoted by 1. If the
string to be located is not found, 0 is returned.
@param x expression for string to be searched

@param pattern string to be located

@param from position at which to start search

@return expression corresponding to position

X% >k b X X X ot %

*

*/
Expression<Integer> locate (Expression<String> x,
String pattern,
int from);

JSR-338 Maintenance Release 263 7/17/17

Oracle

Criteria API Java Persistence 2.2, Maintenance Release Criteria API Interfaces

// Date/time/timestamp functions:

/**

* Create expression to return current date.
* (@return expression for current date

*/

Expression<java.sqgl.Date> currentDate () ;

/**

* Create expression to return current timestamp.
* (@return expression for current timestamp

*/

Expression<java.sqgl.Timestamp> currentTimestamp () ;

/**

* Create expression to return current time.
* (@return expression for current time

*/

Expression<java.sqgl.Time> currentTime () ;

//in builders:

/**
* Interface used to build in predicates.
*/

public static interface In<T> extends Predicate {

/**

* Return the expression to be tested against the
* list of values.

* @return expression

*/

Expression<T> getExpression () ;

/**

* Add to list of values to be tested against.
* (@param value value

* @return in predicate

*/

In<T> value (T value);

/**

* Add to list of values to be tested against.
* @param value expression

* @return in predicate

*/

In<T> value (Expression<? extends T> value);

Create predicate to test whether given expression

* 1s contained in a list of values.

* (@param expression to be tested against list of values
* (@return 1in predicate

<T> In<T> in (Expression<? extends T> expression);

71717 264 JSR-338 Maintenance Release

Oracle

Criteria API Interfaces Java Persistence 2.2, Maintenance Release Criteria API

// coalesce, nullif:

/**

* Create an expression that returns null if all its arguments
evaluate to null, and the value of the first non-null argument
otherwise.

@param x expression
@param y expression
* @return coalesce expression
*
/
<Y> Expression<¥> coalesce (Expression<? extends ¥Y> x,
Expression<? extends Y> y);

* % X X

/**

* Create an expression that returns null if all its arguments

* evaluate to null, and the value of the first non-null argument
* otherwise.

* @param x expression

*

@param y value
* @return coalesce expression
*/

<Y> Expression<¥Y> coalesce (Expression<? extends Y> x, Y vy);

/xx
Create an expression that tests whether its argument are
equal, returning null if they are and the value of the
first expression if they are not.

@param x expression
@param y expression

* @return nullif expression
*

/

<Y> Expression<¥> nullif (Expression<Y¥> x, Expression<?> vy);

/

* % X o %

*

Create an expression that tests whether its argument are
equal, returning null if they are and the value of the
first expression if they are not.
@param x expression
@param y value

* @return nullif expression

*

/
<Y> Expression<¥Y> nullif (Expression<¥> x, Y Vy);

X % X o % %

// coalesce builder:

/**

* Interface used to build coalesce expressions.

*

* A coalesce expression is equivalent to a case expression
* that returns null if all its arguments evaluate to null,
* and the value of its first non-null argument otherwise.
*/

public static interface Coalesce<T> extends Expression<T> {

JSR-338 Maintenance Release 265 7/17/17

Oracle

Criteria API Java Persistence 2.2, Maintenance Release Criteria API Interfaces

/**

* Add an argument to the coalesce expression.
* @param value value

* @return coalesce expression

*/

Coalesce<T> value (T value);

/**
* Add an argument to the coalesce expression.
* (@param value expression
* @return coalesce expression
*/
Coalesce<T> value (Expression<? extends T> value);

}
/‘k‘k

* Create a coalesce expression.
* @return coalesce expression
*/

<T> Coalesce<T> coalesce();

//case builders:

/**

* Interface used to build simple case expressions.

* Case conditions are evaluated in the order in which
* they are specified.

*/

public static interface SimpleCase<C,R> extends Expression<R> {

/**

* Return the expression to be tested against the
* conditions.

* @return expression

*/

Expression<C> getExpression();

/**
* Add a when/then clause to the case expression.
* @param condition "when" condition

* @param result "then" result value
* @return simple case expression
*/
SimpleCase<C, R> when(C condition, R result);
/**
* Add a when/then clause to the case expression.
* (@param condition "when" condition
* @param result "then" result expression
* @return simple case expression
*/

SimpleCase<C, R> when(C condition,
Expression<? extends R> result);

71717 266 JSR-338 Maintenance Release

Oracle

Criteria API Interfaces

/**
*

*/
<c,

/**
*
*
*

*/

Java Persistence 2.2, Maintenance Release Criteria API
/ * %
* Add an "else" clause to the case expression.
* @param result "else" result
* @return expression
*/
Expression<R> otherwise (R result);
/ * %
* Add an "else" clause to the case expression.
* @param result "else" result expression
* (@return expression
*/

Expression<R> otherwise (Expression<? extends R> result);

Create a simple case expression.
@param expression to be tested against the case conditions
@return simple case expression

R> SimpleCase<C,R> selectCase (
Expression<? extends C> expression);

Interface used to build general case expressions.
Case conditions are evaluated in the order in which
they are specified.

public static interface Case<R> extends Expression<R> {

/**
* Add a when/then clause to the case expression.
* @param condition "when" condition
* @param result "then" result value
* @return general case expression
*
/

Case<R> when (Expression<Boolean> condition, R result);

/**
* Add a when/then clause to the case expression.
* @param condition "when" condition

* @param result "then" result expression
* @return general case expression
*/

Case<R> when (Expression<Boolean> condition,
Expression<? extends R> result);

/**

* Add an "else" clause to the case expression.
* @param result "else" result

* (@dreturn expression

*/

Expression<R> otherwise (R result);

JSR-338 Maintenance Release

267 71717

Oracle

Criteria API Java Persistence 2.2, Maintenance Release Criteria API Interfaces
/ * *
* Add an "else" clause to the case expression.
* (@param result "else" result expression
* @return expression
*/
Expression<R> otherwise (Expression<? extends R> result);
}
/ * %
* Create a general case expression.
* (@return general case expression
*/
<R> Case<R> selectCase();
/ * *
* Create an expression for the execution of a database
* function.
* @param name function name
* (@param type expected result type
* @param args function arguments
* @return expression
*/
<T> Expression<T> function (String name,
Class<T> type,
Expression<?>... args);
//methods for downcasting:
/ * %
* Downcast Join object to the specified type.
* (@param join Join object
* (@param type type to be downcast to
* (@return Join object of the specified type
*/
<X, T, V extends T> Join<X, V>
treat (Join<X, T> join, Class<V> type);
/ * %
* Downcast CollectionJoin object to the specified type.
* (@param join CollectionJoin object
* (@param type type to be downcast to
* (@return CollectionJoin object of the specified type
*/
<X, T, E extends T> CollectionJoin<X, E>
treat (CollectionJoin<X, T> join, Class<E> type);
/ * %
* Downcast SetJoin object to the specified type.
* (@param join SetJoin object
* (@param type type to be downcast to
* (@return SetJoin object of the specified type
*/
<X, T, E extends T> SetJoin<X, E>
treat (SetJoin<X, T> join, Class